
IBM Host Access Transformation Services

Rich Client Platform Programmer's Guide
Version 9.5

SC27-5903-01

���

IBM Host Access Transformation Services

Rich Client Platform Programmer's Guide
Version 9.5

SC27-5903-01

���

Note
Before using this information and the product it supports, be sure to read the general information under Appendix B,
“Notices,” on page 125.

Eighth Edition (November 2015)

© Copyright IBM Corporation 2007, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Introduction 1
Code examples 2
Using the API documentation (Javadoc) 2

Chapter 2. Plug-ins and application
classes 3
Plug-in project extension points 4

Allowing only one instance of an application . . 4
HATS runtime extension plug-in. 5
Application classes 8

HostAccessApplication 8
HostAccessWorkbenchAdvisor 9
HostAccessWorkbenchWindowAdvisor 10
HostAccessActionBarAdvisor 11

Chapter 3. Perspectives and views. . . 13
The Host Access perspective. 13
Applications view 14

Programmatically starting an instance of an
application 14

Transformation view 15
Extending the transformation view's menu . . . 16

Chapter 4. Transformations 19
Editing transformations 19
HATS-specific controls. 19

The ComponentRendering class 19
The DefaultRendering class 20
The MacroKey class 20
The GlobalVariableControl class 21
The HostKey class 21
The ApplicationKey class 21

Transformation classes 22
Samples 23

Sending a key from a button 23
Updating an input field after the user selects a
SWT List widget item 24
Setting the value of a global variable from a
transformation 24
Setting and retrieving global variable values . . 24
Validating input on a transformation 25
Customizing the host keypad 26
Customizing the application keypad 27
Overriding the default monospaced font. . . . 27
Integrating other user interface widgets 27

Chapter 5. Templates 31
Editing templates 32
Samples 32

Customizing host color mappings 32
Removing borders from input fields 34

Chapter 6. Runtime services 35
Accessing the service manager 36

Using the runtime service 36
Using the application service 37
Using the client service 37
Using the session service 38
Integration with other Eclipse UI views 41

An incoming communication scenario 41
Samples 42

Sample class and methods showing how to
access the different runtime services 42
Listening for 3270 Print Jobs 46
Creating a custom composite for use with the
Show action 50

Chapter 7. Integrating business logic 53
Incorporating Java code from other applications . . 54
Using global variables in business logic 55
Business logic examples 57

Example: Date conversion 57
Example: Adding values that are contained in an
indexed global variable 58
Example: Reading a list of strings from a file into
an indexed global variable 58

Using custom screen recognition 60
Example of custom screen recognition 61
Custom screen recognition using global variables 62

Chapter 8. Creating custom
components and widgets 65
Components and widgets properties for RCP
applications 65
Creating a custom host component 66
Extending component classes 68
Creating a custom widget 68

Extending widget classes 70
Widgets and global rules 70

Registering your component or widget 70
HATS Toolkit support for custom component and
widget settings 72

Chapter 9. Using the HATS
bidirectional API 75
Data Conversion APIs 75

ConvertVisualToLogical 75
ConvertLogicalToVisual 75

Global Variable APIs 76
getGlobalVariable 76
getSharedGlobalVariable 76

BIDI OrderBean 76
BIDI OrderBean methods 77

Appendix A. HATS Toolkit files 81
Application file (.hap) 81

<application> tag 81
<connections> tag 82

© Copyright IBM Corp. 2007, 2015 iii

||

||

<connection> tag 82
<eventPriority> tag 82
<event> tag 82
<classSettings> tag 82
<class> tag 82
<setting> tag 83
<textReplacement> tag 90
<replace> tag 90
<defaultRendering> tag 91
<renderingSet> tag 91
<renderingItem> tag 92
<globalRules> tag 94
<rule> tag 94

Connection files (.hco) 96
<hodconnection> tag 97
<otherParameters> tag 102
<classSettings> tag 103
<class> tag 103
<setting> tag 104
<poolsettings> tag. 106
<userconfig> tag 107

Screen combination files (.evnt) 108
<combinations> tag 108
<enddescription> tag 108
<navigation> tag 108
<screenUp> tag 108
<screenDown> tag 109
<keyPress> tag 109
<setCursor> tag 109
<sendText> 109

Screen customization files (.evnt) 109
<event> tag 109
<actions> tag 110
<apply> tag 110
<insert> tag 110
<extract> tag 111
<set> tag 111
<execute> tag 113
<show> tag 113
<forwardtoURL> tag 113

<disconnect> tag 113
<play> tag 113
<perform> tag 114
<pause> tag 114
<sendkey> tag 114
<globalRules> tag 114
<rule> tag 114
<associatedScreens> tag 116
<screen> tag. 116
<description> tag 117
<oia> tag 117
<string> tag 117
<nextEvents> tag 118
<event> tag 118
<remove> tag 118

Macro files (.hma) 119
<macro> tag 119
<associatedConnections> tag 119
<connection> tag 119
<extracts> tag 119
<extract> tag 119
<prompts> tag 120
<prompt> tag 120
<HAScript> tag 121

Screen capture files (.hsc) 121
BMS Map files (.bms and .bmc) 122
Image files (.gif, .jpg, or .png) 123
Spreadsheet files (.csv or .xls) 123
Host simulation trace files (.hhs) 123
ComponentWidget.xml 123

Appendix B. Notices 125
Programming interface information 126
Trademarks 127

Glossary 129

Index 137

iv IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Chapter 1. Introduction

The Host Access Transformation Services (HATS) Toolkit offers many tools for
creating and customizing rich client platform (RCP) HATS applications that
provide an easy-to-use graphical user interface (GUI) for your character-based 3270
or 5250 host applications. HATS rich client applications can be developed to run in
an Eclipse Rich Client Platform (RCP) implementation, in Lotus Notes®, or in the
Lotus® Expeditor Client to provide native client applications targeted for an end
user's desktop. HATS can also be used to create service-oriented architecture (SOA)
assets from logic contained in your character based 3270, 5250, or VT applications.

Because HATS rich client applications are Java™ programs that are deployed as
Eclipse plug-ins, you should be familiar with following topics to create your own
HATS rich client applications:
v Java programming
v Eclipse plugin development
v Standard Widgets Toolkit (SWT), which is the graphical user interface toolkit

used by Eclipse

If not, refer to the following technical documentation:
v Java Tutorials
v Eclipse documentation

You might find that your HATS application requires some additional function that
you cannot add using the wizards and editors in HATS Toolkit and IBM® Rational®

Software Delivery Platform (SDP). This Rich Client Platform Programmer's Guide
explains several ways that you can extend your HATS application with additional
programming. It also assumes that you are familiar with basic HATS concepts such
as:
v How HATS processes host screens
v Creating a transformation using components and widgets
v Events and actions
v Using global variables
v Recording a macro

If you are not already familiar with any of these topics, refer to the information
about them in HATS User's and Administrator's Guide so that you will have the
necessary background to make good use of the information in this book. You
should also be familiar with using Rational SDP to create rich client applications.

This Rich Client Platform Programmer's Guide describes ways to enhance your HATS
application by programming. You can:
v Extend the workbench classes provided by HATS to customize the workbench

window where your application is running. Refer to Chapter 2, “Plug-ins and
application classes,” on page 3 for more information.

v Customize the transformation view of your application, by extending the view
class provided in your plug-in project. See “Extending the transformation view's
menu” on page 16 for more information.

© Copyright IBM Corp. 2007, 2015 1

|
|
|
|
|
|
|
|

|
|
|

|
|
|

v Programmatically interact with a HATS session. For example, send a command
from another Eclipse view. See “Integration with other Eclipse UI views” on
page 41 for more information.

v Add new host components or widgets to be used in transformations by
extending the existing host components and widgets. See for more information.

v Customize the perspective of your application. See “The Host Access
perspective” on page 13 for more information.

When enhancing your applications, you might find that you need to edit some of
the Java source files. Information provided in the section of the Rational Software
Delivery Platform help titled Developing Java applications can help you with this
task.

Code examples
Code examples throughout this guide illustrate the use of the objects or APIs
introduced in the adjoining sections. Use these examples in your application only if
you are sure that the example code performs the action you intend to perform. The
examples may or may not work if you copy them from the book into your
application.

Using the API documentation (Javadoc)
The HATS API reference documentation is useful for many programming tasks. To
view this documentation, see IBM Knowledge Center collection for HATS at
http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0 and click the
HATS API References (Javadoc) link. Refer to this documentation when you need
information about, and examples of, any of the Application Programming
Interfaces provided with HATS.

2 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

|
|
|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0

Chapter 2. Plug-ins and application classes

A plug-in is a structured component that describes itself to the Eclipse platform
using an OSGi manifest (MANIFEST.MF) file and a plug-in manifest (plugin.xml)
file. A HATS rich client project is an Eclipse plug-in project that contains artifacts
needed for generating a plug-in that runs in an Eclipse environment, such as Lotus
Notes or Lotus Expeditor Client. Plug-in projects are developed using the Eclipse
Plug-in Development Environment (PDE), which is a component of the Eclipse
Software Development Kit (SDK). The Rational Software Delivery Platform (SDP)
extends the Eclipse SDK, and HATS further extends the Rational SDP. For more
information on the Eclipse PDE, go to http://www.eclipse.org/pde/.

One tool provided by the Eclipse PDE is the plug-in manifest editor. This editor is
used to modify the files that describe the plug-in to the Eclipse environment where
it is running. Plug-ins generally have two manifest files: plugin.xml and
MANIFEST.MF (plugin.xml is optional if the plug-in is not extending another
plug-in). If you open either file in the workbench, the same editor is opened, but
fields in the editor are tied to different files. The plugin.xml describes how the
plug-in extends the platform, what extensions it publishes itself, and how it
implements its functionality. The MANIFEST.MF file indicates the ID, version,
vendor, and the other plug-ins required by this plug-in.

To edit the plug-in manifest for a HATS rich client project, click the Open the
plug-in manifest link on the Overview page of the Project Settings editor. The
editor will have the following tabs:

Overview Contains fields for modifying the base attributes of
the plug-in, such as such as its plug-in identifier, or
ID, and version.

Dependencies Lists the plug-ins required by this plug-in. If you
need to use a function available in another plug-in,
use this tab to add a dependency on the plug-in.

Runtime Displays the list of Java packages available for use
by plug-ins that depend on this plug-in.

Extensions Displays the extension points that are extended by
this plug-in.

Extension Points Displays the extension points defined by a HATS
rich client plug-in. By default, no extension points
are defined in a HATS rich client plug-in.

Build Enables you to configure which files are included
when this plug-in is built during an export
operation. If you add other files to this plug-in,
you might need to modify this list.

Notes:

1. If you add non-Java source files to a plug-in
project, you need to update the build.properties
file for the plug-in. The build.properties file
controls which files are included when a project
is exported as a plug-in (first step of

© Copyright IBM Corp. 2007, 2015 3

http://www.eclipse.org/pde/

deployment). This file is located at the root of
the plug-in project and can be edited using the
plug-in manifest editor.

2. If you create a new folder in a plug-in project,
the new folder is not included when you export
the plug-in unless you add the folder in the
Build tab.

MANIFEST.MF Shows the source view of the plug-in
MANIFEST.MF file. You should use the Overview,
Dependencies, and Runtime tabs to make changes
to this file instead of editing the source directly.

plugin.xml Shows the source view of the plugin.xml file. You
should use the Extensions and Extension Points
tabs to make changes to this file.

build.properties Shows the source of the build.properties file. You
should use the Build tab to make changes to this
file.

Plug-in project extension points
When a plug-in wants to allow other plug-ins to extend or customize portions of
its functionality, it will declare an extension point. The extension point declares a
contract, typically a combination of XML markup and Java interfaces, that
extensions must conform to. Plug-ins that want to connect to that extension point
must implement that contract in their extension. The key attribute is that the
plug-in being extended knows nothing about the plug-in that is connecting to it
beyond the scope of that extension point contract. This allows plug-ins built by
different individuals or companies to interact seamlessly, even without their
knowing much about one another.

The com.ibm.hats.rcp.runtime.rcpApplications extension registers your HATS rich
client plug-in plug-in with the HATS runtime. This is how the HATS runtime
knows which plug-ins are HATS application plug-ins. The Applications view is
populated based on plug-ins that implement this extension point. This extension
point also indicates which view (by default, your transformation view) is opened
when an instance of your application is launched.

The HATS RCP project uses the Eclipse org.eclipse.ui.views extension to register
the transformation view class in this plug-in with the Eclipse platform.

Allowing only one instance of an application
By default, a user can work with multiple instances of a HATS rich client
application at one time by opening multiple instances of the application's
transformation view. To restrict a user from starting multiple instances of an
application, you can set a flag in the plug-in manifest file, plugin.xml, for the
plug-in project. This flag tells Eclipse to allow only one instance of the application's
view. To set this flag:
1. Open the plug-in manifest file for the project by clicking Open the plug-in

manifest on the Overview page of the Project Settings editor.
2. Click the Extensions tab.
3. In the All Extensions tree, expand the org.eclipse.ui.views node and select the

node corresponding to your project. By default, only one view is listed.

4 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

4. In the Extension Element Details section, change the allowMultiple setting
from true to false.

5. Save the file.

Note: Any change to a plug-in manifest file while the application is running
requires a restart of the runtime workbench.

At runtime, if a user attempts to open a second instance of the application, the
view corresponding to the first application instance receives the focus.

HATS runtime extension plug-in
When you create a HATS rich client plug-in project, a HATS rich client runtime
extension plug-in project is also created if one does not already exist in the
workspace. This plug-in contains files and settings that are common between all
HATS rich client plug-ins running in an environment. This includes, but is not
limited to:
v Trace and log settings
v Generated trace and log files
v Registration of key mappings
v Registration of preference pages
v Registration of properties pages

The default name and ID of this plug-in is com.ibm.hats.rcp.runtime.extension,
and its initial version is 1.0.0.

Note: Do not change the ID of the HATS RCP runtime extension plug-in. The
HATS runtime looks for a plug-in with this ID when it starts.

This plug-in is similar to a HATS EAR project in that it contains files that are
common between multiple HATS applications. Unlike a HATS EAR project, only
one of these plug-ins can run in an Eclipse environment at one time. This means
that trace settings, keyboard mappings, and so forth apply to the entire rich client
environment and cannot be configured at the plug-in project level.

Table 1 lists and describes the files included in this plug-in.

Table 1. HATS-specific files in the runtime extension plug-in

File or folder Description

images (folder) Contains images for the Applications and
Print Jobs views, and an image for an
Expeditor application.
Note: If an image is only used by a single
HATS application plug-in, for example, to
include an image with a template, consider
including it in the application plug-in rather
than the runtime extension plug-in.

logs (folder) Contains HATS trace and messages files.

product.xml Indicates the version of HATS used to
generate this plug-in project. This file is
updated when service packs are applied.

runtime.properties HATS runtime settings, including settings to
enable tracing.

Chapter 2. Plug-ins and application classes 5

Table 1. HATS-specific files in the runtime extension plug-in (continued)

File or folder Description

runtime-debug.properties Same settings as runtime.properties, but
only used when an Eclipse runtime
workbench is launched in debug mode.

Table 2 lists and describes the files included in this plug-in that are not specific to
HATS.

Table 2. Files in the runtime extension plug-in not specific to HATS

File or Folder Description

build.properties Indicates which files should be packaged in
the plug-in when it is exported from the
development environment.

MANIFEST.MF Plug-in descriptor. Indicates ID, name,
version of the plug-in, and plug-in
dependencies.

plugin.xml Plug-in descriptor. Indicates the extensions
contributed by this plug-in.

plugin_xx.properties Contains translated strings used by
plugin.xml and MANIFEST.MF.

Table 3 lists the extensions contributed by the HATS RCP runtime extension
plug-in.

Table 3. RCP runtime extensions

Extension Point ID Description

org.eclipse.core.runtime.applications Registers the application class provided
in the HATS RCP runtime extension
plug-in with the Eclipse platform. See
“Application classes” on page 8 for more
information.

org.eclipse.core.runtime.products Defines a product that references the
application registered with the
org.eclipse.core.runtime.applications
extension point. See “Application
classes” on page 8 for more information.

org.eclipse.ui.perspectives Registers the Host Access perspective
class provided in the HATS RCP runtime
extension plug-in with the Eclipse
platform. See Chapter 3, “Perspectives
and views,” on page 13.

org.eclipse.ui.views Registers the Applications and Print Jobs
views with the Eclipse platform.

6 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Table 3. RCP runtime extensions (continued)

Extension Point ID Description

org.eclipse.ui.propertyPages Registers the application properties
pages with the Eclipse platform. These
pages are displayed when a user
right-clicks on an application in the
Applications view and selects Properties.
You can prevent a page from being
available to your users by removing or
commenting out its declaration.
Note: The Connection Parameters
Overrides page only appears if
connection parameter overriding is
enabled in your project. The Variables
Override page only appears if global
variable overriding is enabled in your
project.

org.eclipse.ui.actionSets Registers the print action used to print
what is being displayed on the
transformation view.

org.eclipse.ui.preferencePages Registers the preferences pages provided
by HATS. Preferences are usually
available by selecting File > Preferences
or Window > Preferences (depending on
the Eclipse environment). You can
prevent a page from being available to
your users by removing or commenting
out its declaration. For example, to
prevent a user from modifying trace or
service settings, you can remove the
declared extension for the
Troubleshooting page.

org.eclipse.ui.contexts Registers the Host Access keyboard
context. A context defines a group of
related commands.

org.eclipse.ui.commands Registers commands for each of the
available actions. A command represents
a request from an end user that can be
handled by an action.

Chapter 2. Plug-ins and application classes 7

Table 3. RCP runtime extensions (continued)

Extension Point ID Description

org.eclipse.ui.bindings Registers the default keyboard shortcut
for a specific command. You can change
the default shortcut for a command by
modifying the sequence attribute of the
declaration. A user can override the
shortcut for a command using the Keys
preferences pages.

The key mappings are defined per
scheme ID based on the intended
runtime client. The schemeId for both
Eclipse RCP and Lotus Expeditor Client
is:
org.eclipse.ui.defaultAcceleratorConfiguration.

The schemeId for Lotus Notes is:
com.ibm.workplace.notes.hannoverConfiguration.

Note: For examples, see the section,
Remapping keys for HATS rich client
applications in the HATS User's and
Administrator's Guide.

com.ibm.eswe.workbench.WctApplication Registers the Host Access perspective
with Lotus Expeditor Client and Lotus
Notes. This extension point is used by
Lotus Expeditor Client and Lotus Notes
to populate the list of applications
displayed on the Open menu. See
Applications in the Lotus Expeditor
documentation for more information.
Note: This declaration does not appear if
there are no projects in your workspace
targeted for deployment to Lotus
Expeditor Client or Lotus Notes.

Application classes
The classes described in this section are responsible for starting and configuring
the Eclipse rich client platform environment. For more information on the function
and default implementations of these classes, see the Eclipse documentation at
http://www.eclipse.org/documentation/, select your version of Eclipse, and search
for the section named Building a Rich Client Platform application.

Note: The HostAccessApplication, HostAccessWorkbenchAdvisor,
HostAccessWorkbenchWindowAdvisor, and HostAccessActionBarAdvisor
classes are only used when Eclipse has been configured, either as part of the
product configuration or by startup parameters, to use the application or
product defined in the HATS RCP runtime extension plug-in. These classes
are not used when this plug-in is running in Lotus Expeditor Client or Lotus
Notes since these products use their own application classes.

HostAccessApplication
An Eclipse Application class is the main entry point in an Eclipse environment.
When the Eclipse platform starts, it finds and loads the specified application.

8 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

ugkbdspt.htm#kbd_remap_rcp
ugkbdspt.htm#kbd_remap_rcp
http://publib.boulder.ibm.com/infocenter/ledoc/v6r2/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_eswe_workbench_WctApplication.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r2/index.jsp
http://publib.boulder.ibm.com/infocenter/ledoc/v6r2/index.jsp
http://www.eclipse.org/documentation/

A default application class, HostAccessApplication, is provided in the HATS RCP
runtime extension plug-in project. This class creates a new workbench window
configured by the HostAccessWorkbenchWindowAdvisor class, which is also
provided.

Note: Because of the simplicity of the default application class, there is usually no
need to modify it.

To use the provided application as the main entry point for an Eclipse environment
instance, specify the application's ID in the application argument:

Windows:
eclipse.exe -application
com.ibm.hats.rcp.runtime.extension.application

Linux: ./eclipse -application
com.ibm.hats.rcp.runtime.extension.application

An Eclipse product is responsible for branding an Eclipse environment. Branding
includes defining an "About" dialog, setting window icons, defining default
preferences, and specifying a splash screen which is displayed when the platform
starts. For more information on branding, see the Eclipse documentation at
http://www.eclipse.org/documentation/, select your version of Eclipse, and search
for the section named Customizing a product. A default product is defined in the
HATS runtime extension plug-in (com.ibm.hats.rcp.runtime.extension.product). To
start the Eclipse platform using this product, specify the product's ID in the
product argument:

Windows:
eclipse.exe -product com.ibm.hats.rcp.runtime.extension.product

Linux: ./eclipse -product com.ibm.hats.rcp.runtime.extension.product

Because the product extension point indicates which application to use, specifying
an application is not required when a product is specified. In the case of the HATS
runtime extension plug-in product, the HATS runtime extension plug-in
application is used by default.

HostAccessWorkbenchAdvisor
An Eclipse WorkbenchAdvisor class is responsible for specifying the default
perspective and constructing a WorkbenchWindowAdvisor object, which is in turn
responsible for configuring the workbench window. An implementation of this
class is provided for you in the HATS RCP runtime extension plug-in. This class,
HostAccessWorkbenchAdvisor, returns a new instance of an
HostAccessWorkbenchWindowAdvisor object and specifies
hostaccess.perspectives.main as the default perspective. This is why the Host
Access perspective is displayed by default when a new workbench window is
opened. If you have created a custom perspective, you can update the
getInitialWindowPerspectiveId() method to return the ID of this perspective.
Alternatively, you can specify the perspective when Eclipse is launched using the
-perspective argument:

Windows:
eclipse.exe -product com.ibm.hats.rcp.runtime.extension.product
-perspective myCompany.myCustomPerspective

Linux: ./eclipse -product com.ibm.hats.rcp.runtime.extension.product
-perspective myCompany.myCustomPerspective

Chapter 2. Plug-ins and application classes 9

http://www.eclipse.org/documentation/

Note: Prior to Eclipse 3.1, the WorkbenchAdvisor class was responsible for
initializing the workbench, configuring the workbench window, and creating
actions for the menu bars and toolbars. These responsibilities are now
divided between three classes: WindowAdvisor, WorkbenchWindowAdvisor,
and ActionBarAdvisor.

HostAccessWorkbenchWindowAdvisor
An Eclipse WorkbenchWindowAdvisor class is responsible for configuring an
Eclipse workbench window, including its size, location, and style. An
implementation of this class is provided for you in the HATS RCP runtime
extension plug-in. This class, HostAccessWorkbenchWindowAdvisor, specifies the
initial size of the workbench window and hides the coolbar and status line areas
since HATS does not contribute to these areas by default.

This class is also responsible for creating the action bar advisor. An action bar
advisor is primarily responsible for configuring the menu bar of the workbench
window. See “HostAccessActionBarAdvisor” on page 11 for more information on
customizing the menu bar and toolbar of the workbench window.

Controlling the size of the workbench window
Follow these steps to change the default size of the workbench window:
1. From the Navigator or Package Explorer view, open the

HostAccessWorkbenchWindowAdvisor class located in the hostaccess package
of the com.ibm.hats.rcp.runtime.extension plug-in project.

2. Find the preWindowOpen() method and change the parameter passed to the
setInitializeSize method of the IWorkbenchWindowConfigurer object. For
example, to set the initial window size to 800 pixels wide and 600 pixels tall,
update or add the following code:
public void preWindowOpen() {

IWorkbenchWindowConfigurer configurer = getWindowConfigurer();
configurer.setInitialSize(new Point(800, 600));
...

}

To automatically maximize the workbench window by default when it is opened,
implement the postWindowCreate() method of the
HostAccessWorkbenchWindowAdvisor class:
public void postWindowCreate() {

PlatformUI.getWorkbench().getActiveWorkbenchWindow().
getShell().setMaximized(true);

}

Note: You might need to update this class's import section if one or more
referenced classes cannot be resolved. To automatically update the import
section, right-click inside the editor of the source file and select Source >
Organize Imports.

Showing the perspective bar
The perspective bar, which resides near the top of the workbench window,
provides quick access to perspectives that are already open, and provides the
ability for end users to open a new perspective. Showing the perspective bar is a
quick and easy way to allow your end users to work with different perspectives.
To show the perspective bar:
1. From the Navigator or Package Explorer view, open the

HostAccessWorkbenchWindowAdvisor class located in the hostaccess package
of the com.ibm.hats.rcp.runtime.extension plug-in project.

10 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

2. Find the preWindowOpen() method and update it to call the
setShowPerspectiveBar method of the IWorkbenchWindowConfigurer object. to
true:
public void preWindowOpen() {
IWorkbenchWindowConfigurer configurer = getWindowConfigurer();
configurer.setShowPerspectiveBar(true);
...
}

HostAccessActionBarAdvisor
An Eclipse ActionBarAdvisor class is responsible for configuring the action bars
(toolbar, coolbar, menu bar, status line) for a workbench window. An
implementation of this class is provided for you in the HATS RCP runtime
extension plug-in. This class, HostAccessActionBarAdvisor, creates the actions on
the menu bar, including the items under the File menu.

Table 4 lists the methods can be implemented or extended by the
HostAccessActionBarAdvisor class.

Table 4. HostAccessActionBarAdvisor Class methods

Method Description

makeActions(IWorkbenchWindow window) Action objects should be created and
initialized in this method.

fillMenuBar(IMenuManager) Populates the workbench window's menu
bar with menus and submenus. The current
implementation of this method creates and
populates File, Window, and Help menus. To
hide an action that is already showing on
the menu, avoid adding it to the
MenuManager. For example, to hide the
Print action, remove the following line from
fillMenuBar() method:

fileMenu.add(printAction);

Note: The fillMenuBar() method is only
applicable if the workbench's
IWorkbenchWindowConfigurer indicates
that the menu bar should be shown.

fillCoolBar(ICoolBarManager) Populates the workbench window's cool bar
with items.
Note: The fillCoolBar() method is only
applicable if the workbench's
IWorkbenchWindowConfigurer indicates
that the cool bar should be shown.

Customizing the workbench window toolbar
To demonstrate how the HostAccessActionBarAdvisor class can be extended, the
following steps show how to add a toolbar item to the main coolbar area of the
workbench window. When clicked, a new instance of a specified HATS rich client
application opens.
1. Update the HostAccessWorkbenchWindowAdvisor.preOpen() method to show the

workbench window's coolbar area. This method has already been implemented,
so you only need to add the call to the setShowCoolBar(boolean) method:

Chapter 2. Plug-ins and application classes 11

public void preWindowOpen() {
...
configurer.setShowCoolBar(true);
...

}

2. Add a new private member to the HostAccessActionBarAdvisor:
private LaunchApplicationAction launchAppAction;

3. Add code to the HostAccessActionBarAdvisor.makeActions() method to create
a new instance of the LaunchApplicationAction class. The constructor for this
class takes two arguments:
a. The ID of the HATS rich client application
b. The IWorkbenchWindow object, which is passed into the makeActions()

method):
protected void makeActions(final IWorkbenchWindow window) {

...
launchAppAction = new LaunchApplicationAction("myPlugin", window);

}

4. Add or update the ApplicationActionBarAdvsior.fillCoolBar() method to
create a toolbar, add the new launcher action to the toolbar, and then add the
toolbar to the coolbar:
protected void fillCoolBar(ICoolBarManager coolBar) {

// Create toolbar manager
IToolBarManager mainToolbar = new ToolBarManager(SWT.FLAT | SWT.RIGHT);
// Add the launch action to the toolbar manager
mainToolbar.add(launchAppAction);

// Add the main toolbar to the window coolbar
coolBar.add(new ToolBarContributionItem(mainToolbar, "main"));

}

5. Launch a new Eclipse workbench. You should have a new toolbar item that,
when clicked, will open a new instance of the transformation view associated
with this plug-in.

Note: You can change both the default image and text displayed for the launch
action by calling the setText() and setImageDescriptor() methods on the
launchAppAction object. See the Eclipse API for the
org.eclipse.jface.action.Action class for more information.

Host AccessHost Access

F W Hile indow elp

Launch testrcp

Figure 1. Launching a new workbench

12 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Chapter 3. Perspectives and views

A perspective defines the initial layout of views in an Eclipse workbench window.
Each perspective provides a set of functions for accomplishing a specific type of
task, or works with specific types of resources. For example, the Java perspective
combines views commonly used while editing Java source files, and the Debug
perspective contains the views for debugging Java programs.

Perspectives control what appears in certain menus and toolbars. Perspectives also
define visible action sets, which you can change to customize a perspective. You
can save a perspective that you build this way, making a custom perspective that
you can open again later.

The Host Access perspective
A default perspective class, hostaccess.perspectives.MainPerspective, has been
provided for you in the com.ibm.hats.rcp.runtime.extension plug-in project. This
class extends from the HATS com.ibm.hats.rcp.ui.Perspective class which
implements the Eclipse perspective interface, org.eclipse.ui.IPerspectiveFactory. The
default title for this perspective is Host Access, although you can change the title
by modifying the plugin_en.properties file in the
com.ibm.hats.rcp.runtime.extension plug-in project.

Note: You will need to modify each of the plugin_xx.properties files for each
language you will be supporting.

Table 5 lists the methods that can be overridden in your perspective class.

Table 5. Methods to override perspective class
Method Description

addApplicationsView(IPageLayout) Adds the HATS applications view to the perspective.

createTransformationViewsPlaceholder(IPageLayout) Creates a placeholder for the HATS transformation views.

createPrintJobViewsPlaceholder(IPageLayout)</code> Creates the placeholder area for the 3270 and 5250 print
jobs view.

addPrintActionsSet(IPageLayout)</code> Adds the print action set (defined in the plugin.xml of
the com.ibm.hats.rcp.rntime.extension plug-in) to the
perspective.

To change the default perspective first opened by the Host Access runtime
application, edit the HostAccessWorkbenchAdvisor source file in
com.ibm.hats.rcp.runtime.extension plug-in project, and change the
PERSPECTIVE_ID to your custom perspective ID. See
“HostAccessWorkbenchAdvisor” on page 9 for more information about the Host
Access perspective.

The following is an example showing how the Host Access perspective is
registered in the plug-in descriptor for com.ibm.hats.rcp.runtime.extension:
<extension

point="org.eclipse.ui.perspectives">
<perspective

name="%PERSPECTIVE_TITLE"
icon="images/applications_view.gif"

© Copyright IBM Corp. 2007, 2015 13

class="hostaccess.perspectives.MainPerspective"
id="hostaccess.perspectives.main">

</perspective>
</extension>

You are not required to use the Host Access perspective, although it provides your
end users with easy access to the HATS applications you have provided them. You
can use the Host Access perspective as a starting point, or start from scratch and
develop a perspective that better fits the needs of your users.

By default, the Host Access perspective includes the Applications view. See
“Applications view” for more information on this view.

See the Javadoc API for more information on the com.ibm.hats.rcp.ui.Perspective
class

Note: Lotus Expeditor Client and Lotus Notes developers: Perspectives are not
displayed in the Open menu of the Lotus Expeditor Client or Lotus Notes
windows. This menu displays the applications that are registered using the
com.ibm.eswe.workbench.WctApplication extension point. See “HATS
runtime extension plug-in” on page 5 for more information on this extension
point.

Applications view
The Applications view (com.ibm.hats.rcp.ui.views.ApplicationsView) is registered
in the com.ibm.hats.rcp.runtime.extension plug-in. This view provides users access
to the HATS rich client applications installed in the client environment. Users can
also configure properties for an application by launching the Properties dialog
from this view.

See Applications view in the User's and Administrator's Guide for more
information on how to use this view.

Programmatically starting an instance of an application
The Applications view is provided by default on the Host Access perspective so
that your end users can start new instances of their HATS rich client applications.
An API is provided to enable you to programmatically launch a new instance of a
HATS rich client application. This is useful if you have elected to not show the
Applications view in your perspective; however, you want to provide a way to
launch an application from the perspective or to programmatically launch an
application instance from another view. For example, you might have a HATS
application to collect data from one host system, launch a new instance of another
HATS application, and pass the data to the new instance.

To facilitate passing parameters to the new application instance, the API enables
you to override connection parameters and initialize global variable values. To
launch a HATS rich client application instance by clicking a button:
1. Use standard SWT programming to add a button and the widgetSelected()

code. For more information, see “Editing transformations” on page 19.
2. Right-click the button and select Events > widgetSelected.
3. Replace the sample placeholder code in the widgetSelected(SelectionEvent)

method with the following code:

14 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

ugrcp.htm#rcp_appview

String applicationId = "myApplication";

Properties initParams = new Properties();
initParams.setProperty(com.ibm.eNetwork.beans.HOD.Session.HOST, "129.12.11.2");
initParams.setProperty(com.ibm.eNetwork.beans.HOD.Session.PORT, "623");
initParams.setProperty("hatsgv_userName", "some user");
initParams.setProperty("hatsgv_password", "xxxxx");
initParams.setProperty("hatssharedgv_someVariable", "zzzzz");

ViewInitInfo viewInitInfo = new ViewInitInfo(true, initParams);
RcpUiUtils.launchView(PlatformUI.getWorkbench().getActiveWorkbenchWindow().

getActivePage(), applicationId, viewInitInfo);

Note: You must enable connection parameter overriding in the Project Settings of
your project to allow any overriding of connection parameters. (You must
also enable global variable overriding to allow overriding global variables.)
Enabling this function causes the Connection Parameters page to be visible
in the properties dialog of the application. See the description of the
org.eclipse.ui.propertyPages extension point in Table 3 on page 6 for
information on hiding Connection Parameters page using the properties
dialog.

Transformation view
A view is a visual component of an Eclipse perspective that displays information
to a user. For more information on perspectives, see “The Host Access perspective”
on page 13. Each HATS rich client application contributes a view, which extends
from the base com.ibm.hats.rcp.ui.views.TransformationView class, to the Eclipse
environment it is running in. The transformation view is used by a user to interact
with a HATS rich client application.

Table 6 lists the methods of your application’s transformation view class can be
overridden.

Table 6. Transformation view methods

Method Description

createViewActions() Creates actions for the view's menu.
Note: After actions are created, they must
then be registered. See “Extending the
transformation view's menu” on page 16 for
more information.

createKeyboardActions() Creates keyboard action classes for all
known HATS keyboard functions registered
in the plugin.xml of the
com.ibm.hats.rcp.runtime.extension plug-in
project. Once keyboard actions are created,
each is registered with the
IKeyBindingService of the workbench
window by the registerKeyboardActions()
method.
Note: See the User's and Administrator's
Guide for information about the
createKeyboardActions() method and how
to add keyboard support for other keys.

Chapter 3. Perspectives and views 15

ugkbdspt.htm#kbd_remap_rcp
ugkbdspt.htm#kbd_remap_rcp

Table 6. Transformation view methods (continued)

Method Description

getApplicationKeypadDisplayInfo() Controls which buttons to display in the
application keypad area of the view's
toolbar. By default, the application's settings
are read to determine what keys to display.
You can override this method in your
transformation view class if you need to
calculate what is displayed. This method has
no affect if the view's toolbar is hidden.

getHostKeypadDisplayInfo() Controls which keys to display in the host
keypad area of the view, and indicates how
the keys are displayed. By default, the
application's settings are read to determine
which keys to display. You can override this
method in your transformation view class if
you need to calculate what is displayed.

getOiaDisplayInfo() Indicates what information to display in the
OIA of the transformation view. By default,
the application's settings are read to
determine what to display. You can override
this method in your transformation view
class if you need to calculate what is
displayed.

getToolbarDisplayInfo() Indicates whether the view's toolbar is
displayed. If displayed, this method also
indicates how buttons are rendered on the
toolbar. By default, the application's settings
are read to determine how the toolbar is
presented. You can override this method in
your transformation view class.

shouldAutoStart() Indicates whether the application should
connect automatically when this view is
opened.

Note: If you need to override how the application keypad, host keypad, OIA, or
toolbar is displayed for a specific transformation, override the appropriate
method in the transformation class, not in the transformation view class.
Only override these methods in the transformation view class if you need to
programmatically alter how these areas are displayed. See “Customizing the
host keypad” on page 26 for an example of overriding how the host keypad
is displayed for a specific transformation.

See the HATS Rich Client API Reference for more information on these methods.

Extending the transformation view's menu
The following code sample shows how to extend your transformation view's
menu. In the sample, a disconnect menu item is added which, when clicked,
causes the host connection to be disconnected and the disconnect and stop events
of the application to be run. You should only add actions to the view's menu that
are applicable during the entire lifecycle of the view.

Follow these steps to extend the menu of your transformation view class (the Java
source file for this class is located in the <project name>.views package of your
project):

16 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

1. Since your action needs to be accessed in at least two methods of your
transformation view class, declare it as a private member of your
transformation view class.
private com.ibm.hats.rcp.ui.actions.DisconnectAction disconnectAction;

2. Override the createViewActions() method of the transformation view class,
ensuring that you call super.createViewActions() if you want the default actions
provided by HATS to be available on the view's menu).
protected void createViewActions() {

super.createViewActions();

//create an action and append the action to the view’s menu.
disconnectAction = new DisconnectAction("Disconnect",getSessionService());
getViewSite().getActionBars().getMenuManager().add(new Separator());
getViewSite().getActionBars().getMenuManager().add(disconnectAction);

}

3. Override the updateViewActions() method to cause your new action to be
enabled or disabled when the menu is updated.
protected void updateViewActions() {

super.updateViewActions();

//enable the action based on the session state.
disconnectAction.setEnabled(getSessionService().getSessionServiceState().

isOperational());
}

After adding the Disconnect action, when you click the menu button in the
transformation view, you can see Disconnect on the menu:

Toggle Keyboard Support Ctrl+K

Connection Details

Properties

Disconnect

ystem

ubsystem

isplay

Default

Figure 2. Disconnect on the transformation view menu

Chapter 3. Perspectives and views 17

18 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Chapter 4. Transformations

A transformation is a HATS resource that controls how a host screen is
transformed. In a rich client application, transformations are Java classes that
extend from the com.ibm.hats.rcp.ui.transformations.RcpTransformation class. This
class extends from the Standard Widget Toolkit (SWT) Composite class, which is a
UI control that contains other controls. A transformation can contain SWT widgets,
host components (ComponentRendering composites), DefaultRendering
composites, global variable controls, macro controls, and host and application keys.
Because a transformation is an SWT composite, standard SWT widgets can also be
added it.

Some common uses of transformations are:
v Rearranging the presentation of host screen information
v Filtering host screen information that you do not want to show to users
v Presenting host components as SWT widgets in a rich client application.

Editing transformations
Transformations are found in the HATS Projects view under Rich Client Content >
Transformations.

You can add HATS-specific controls, such as a ComponentRendering composite.
Adding a control from the palette generates Java code in the transformation. The
generated code references a specific class, as shown in Table 7, based on the
selected palette item. The palette items are available in the HATS drawer of the
palette:

Table 7. HATS-specific controls and corresponding classes

HATS-specific Palette tools Class generated in code

Component com.ibm.hats.rcp.transform.ComponentRendering

Default Rendering com.ibm.hats.rcp.transform.DefaultRendering

Macro Key com.ibm.hats.rcp.transform.MacroKey

Global Variable com.ibm.hats.rcp.transform.GlobalVariableControl

Host Key com.ibm.hats.rcp.transform.HostKey

Application Key com.ibm.hats.rcp.transform.ApplicationKey

More information about the classes listed in this table is provided in the following
section.

HATS-specific controls
In addition to adding standard SWT controls, you can add HATS-specific controls,
such as a ComponentRendering composite, to a transformation. The following
sections describe these HATS-specific controls.

The ComponentRendering class
A ComponentRendering composite is a specialized UI control that transforms a
given host screen region using a specified component, widget, and settings. Based

© Copyright IBM Corp. 2007, 2015 19

|
|

|
|

|
|
|
|
|

||

||

||

||

||

||

||

||
|

|
|

on the selected HATS widget, SWT widgets are generated and placed on the
ComponentRendering composite. The following code example illustrates the
concept:
ComponentRendering componentRendering = new ComponentRendering(this, SWT.NONE);

componentRendering.setScreenCapture(<fully qualified transformation
class name>.screenCapture);

componentRendering.setComponent("<fully qualified component class name>");
componentRendering.setComponentSettings

(new com.ibm.hats.common.StringableProperties(""));
componentRendering.setWidget("<fully qualified widget class name>");
componentRendering.setWidgetSettings

(new com.ibm.hats.common.StringableProperties("<widget settings>"));
componentRendering.setRegion(new com.ibm.hats.transform.regions.

BlockScreenRegion(start_row, start_col, end_row, end_col));
componentRendering.setApplyTextReplacement(true);
componentRendering.setApplyGlobalRules(true);

Note: The setWidgetSettings and setComponentSettings methods take a standard
java.util.Properties object as the parameter. You can construct a Properties
object and populate using the setProperty(String,String) method, as
opposed to using the HATS StringableProperties class.

The DefaultRendering class
A DefaultRendering composite is a specialized UI control that transforms a given
host screen region using a rendering set. A rendering set is defined in the
Rendering tab of the Project Settings editor. Refer to Default Rendering in the
HATS User's and Administrator's Guide for more information on defining rendering
sets. Based on the selected rendering set, SWT widgets are generated and placed
on the DefaultRendering composite. The following code example illustrates the
concept:
DefaultRendering defaultRendering = new DefaultRendering(this, SWT.NONE);
defaultRendering.setScreenCapture(this.screenCapture);
defaultRendering.setRenderingSetName("main");
defaultRendering.setApplyTextReplacement(true);
defaultRendering.setApplyGlobalRules(true);
defaultRendering.setRegion

(new com.ibm.hats.transform.regions.BlockScreenRegion(1,1,24,80));

The MacroKey class
The com.ibm.hats.rcp.transform.MacroKey class represents an individual macro
either as a button (org.eclipse.swt.widgets.Button class) or a link
(org.eclipse.swt.widgets.Link class). The following code sample shows a MacroKey
that is displayed as a button:
macroKey = new MacroKey(this, SwtTransformationConstants.BUTTON);
macroKey.setText("macro_1");
macroKey.setMacroName("macro_1");
macroKey.addSelectionListener(new org.eclipse.swt.events.SelectionListener() {

public void widgetSelected(org.eclipse.swt.events.SelectionEvent e) {
com.ibm.hats.runtime.services.ISessionService

sessionService = getSessionService();
if (sessionService != null) {

sessionService.playMacro(macroKey.getMacroName());
}

}
public void widgetDefaultSelected(org.eclipse.swt.events.SelectionEvent e) {
}

});

20 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

ugprject.htm#defrend

The GlobalVariableControl class
The com.ibm.hats.rcp.transform.GlobalVariableControl class represents a global
variable either as a static text (org.eclipse.swt.widgets.Label class) or an input field
(org.eclipse.swt.widgets.Text class). The following code sample shows a
GlobalVariableControl that displays a global variable as an input field:
gvControl = new GlobalVariableControl(this, SwtTransformationConstants.TEXT);
gvControl.setInitialValueFromGlobalVariable(true);
gvControl.setUseAllIndices(true);
gvControl.setGlobalVariableName("userName");
gvControl.setShared(false);
gvControl.setSeparator("");
gvControl.setPasswordField(false);
gvControl.setIndex(0);
gvControl.setGlobalVariableIndexed(false);

Note: You can read and change global variables from a transformation without
using the GlobalVariableControl class. Please see “Setting and retrieving
global variable values” on page 24 for more details.

The HostKey class
The com.ibm.hats.rcp.transform.HostKey class represents an individual host key
either as a button (org.eclipse.swt.widgets.Button class) or a link
(org.eclipse.swt.widgets.Link class). Multiple keys cannot be included in one
HostKey instance. If you need to have two or more keys, define multiple HostKey
instances. The following code sample shows a HostKey that is displayed as a
button that sends [PF1] to the host when pressed:
hostKey = new HostKey(this, SwtTransformationConstants.BUTTON);
hostKey.setText("F1");
hostKey.setCommand("[pf1]");
hostKey.addSelectionListener(new org.eclipse.swt.events.SelectionListener() {

public void widgetSelected(org.eclipse.swt.events.SelectionEvent e) {
com.ibm.hats.runtime.services.ISessionService

sessionService = getSessionService();
if (sessionService != null) {

sessionService.sendCommand(hostKey.getCommand());
}

}
public void widgetDefaultSelected(org.eclipse.swt.events.SelectionEvent e) {
}

});

The ApplicationKey class
This is the class that represents an individual application key either as a Button or
a Link. Multiple keys cannot be included in one ApplicationKey class. If you need
to have two or more keys, define multiple ApplicationKey instances. The following
code sample shows an ApplicationKey that is displayed as a link and sends a
disconnect command to the HATS runtime when clicked:
applicationKey = new ApplicationKey(this, SwtTransformationConstants.LINK);
applicationKey.setText("<a>Disconnect");
applicationKey.setCommand("disconnect");
applicationKey.addSelectionListener(new org.eclipse.swt.events.SelectionListener() {

public void widgetSelected(org.eclipse.swt.events.SelectionEvent e) {
com.ibm.hats.runtime.services.ISessionService

sessionService = getSessionService();
if (sessionService != null) {

sessionService.sendCommand(applicationKey.getCommand());
}

Chapter 4. Transformations 21

}
public void widgetDefaultSelected(org.eclipse.swt.events.SelectionEvent e) {
}

});

Transformation classes
Table 8 lists the methods that can be overridden in a transformation class.

Table 8. RcpTransformation methods

Method Description

getApplicationKeypadDisplayInfo() Returns an IApplicationKeypadDisplayInfo
object that controls how, and if, the
application keypad is displayed. This
method enables the application keypad to be
customized for this transformation.
Returning null from this method indicates
that the default application keypad, based
on the application's default settings, should
be displayed.

getAutoAdvanceOrderer() Returns an IAutoAdvanceOrderer object that
controls how, and if, auto advance is
performed. The default implementation is to
return null, indicating that the system
should decide the auto advance handler to
use from the project settings.

getDefaultMonospacedFont() Allows you to override the default
monospaced font at the transformation level.
See “Overriding the default monospaced
font” on page 27 for an example that uses
this method.

getHostKeypadDisplayInfo() Returns an IHostKeypadDisplayInfo object
that controls how, and if, the host keypad is
displayed. This method enables the host
keypad to be customized for this
transformation. Returning null from this
method indicates that the default host
keypad should be displayed based on the
application's default settings. Refer to
“Customizing the host keypad” on page 26
for examples that use this method.

getOiaDisplayInfo() Returns an IOiaDisplayInfo object that
controls how, and if, the OIA is displayed.
This method enables the OIA to be
customized for this transformation.
Returning null from this method indicates
that the default OIA should be displayed
based on the application's default settings.

getToolbarDisplayInfo() Returns an IToolbarDisplayInfo object that
controls how, and if, the toolbar is
displayed. This method enables the toolbar
to be customized for this transformation.
Returning null from this method indicates
that the default toolbar should be displayed
based on the application's default settings.

22 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Table 8. RcpTransformation methods (continued)

Method Description

handlePreSubmit() This method is called just prior to a
command being submitted. Refer to
“Validating input on a transformation” on
page 25 for examples that use this method.

handlePostSubmit() This method is called just after a command
has been submitted.

isInitialFocusAtCursorPosition() Identifies whether the initial focus is placed
at cursor position. For more information,
refer to the description of the Initial cursor
position client setting in the HATS User's
and Administrator's Guide.

needsAutoAdvanceSupport() Identifies whether the auto advance function
for this transformation is enabled. For more
information, refer to the description of the
Enable automatic field advance client
setting in the HATS User's and
Administrator's Guide.

preRender() This method is called prior to the render()
method being called.

postRender() This method is called after the render()
method is called and the rendering of the
transformation is complete.

setScreenCapture() Sets the screen capture for use while editing
ComponentRendering and DefaultRendering
in the HATS Toolkit.
componentRendering.setScreenCapture(
<fully qualified transformation
name>.screenCapture);

needsArrowKeyNavigationSupport() Identifies whether the arrow key navigation
support function for this transformation is
enabled. For more information refer to the
Arrow key navigation support client setting
in the HATS User's and Administrator's Guide

Samples

Sending a key from a button
Using the palette, add a SWT Button widget to your transformation. Override the
postRender() method of the RcpTransformation class.

Note: To override the postRender() method, follow these steps:
1. Right-click in the Source editor pane.
2. Select Source > Override/Implement Methods.
3. Under RcpTransformation, check postRender().
4. Click OK.

Add the following code to the postRender() method:
final RcpContextAttributes attrs = (RcpContextAttributes) getContextAttributes();

button.addSelectionListener(new SelectionListener()
{
public void widgetDefaultSelected(SelectionEvent event) {

Chapter 4. Transformations 23

ugprject.htm#prj_client
ugprject.htm#prj_client
ugprject.htm#prj_client
ugprject.htm#prj_client

}

public void widgetSelected(SelectionEvent event) {
attrs.getSessionService().sendCommand("[enter]");
}
});

Updating an input field after the user selects a SWT List
widget item

Using the palette, add a SWT List widget to your transformation. Override the
postRender() method of the RcpTransformation class. Add the following code to
the postRender() method:
//retrieve a model adapter that is bound to a host field at position 1527.
//assuming that the list widget will update the field at this position on the host.
final IModelAdapter modelAdapter = factory.getFieldAdapter(1527);

list.addSelectionListener(new SelectionListener()
{
public void widgetDefaultSelected(SelectionEvent event) {
}

//when an item in the list is selected, update the field at position 1527
//with the value of selected item.

public void widgetSelected(SelectionEvent event) {
modelAdapter.setValue(list.getData(list.

getItem(list.getSelectionIndex())).toString());
}
});

Note: If factory cannot be resolved, add a declaration for it to the transformation.
For example:
private HostScreenModelAdapterFactory factory;

Setting the value of a global variable from a transformation
The following code sample shows how to prompt a user for a value, in the case
the prompt is asking for a customer number, and then set the customerNumber
global variable with this value.
Button button = new Button(this, SWT.NONE);
button.setText("Prompt for command");
button.addSelectionListener(new org.eclipse.swt.events.SelectionAdapter() {

public void widgetSelected(org.eclipse.swt.events.SelectionEvent e) {
InputDialog dialog = new InputDialog(getShell(), "Prompt",

"Enter a customer number:", "", null);
if (dialog.open() == InputDialog.OK) {

String value = dialog.getValue();
getSessionService().getParameterDataAccessService().

setParameterValue("hatsgv_customerNumber",value);
}

}
});

Note: The HATS runtime is unaware of the new global variable value, set by the
setParameterValue() method call, until the form is submitted.

Setting and retrieving global variable values
The following example sets a value to the non-shared global variable named
“myGlobalVariable”:

24 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

getSessionService().getParameterDataAccessService().setParameterValue
("hatsgv_myGlobalVariable", "some new value");

The following example retrieves a value from the non-shared global variable with
the same name.
// This will return some string or null
String str = getSessionService().getParameterDataAccessService().

getParameterValue("hatsgv_myGlobalVariable");

Note: If the global variable is shared, replace hatsgv_myGlobalVariable with
hatssharedgv_myGlobalVariable in the preceding examples.

Validating input on a transformation
All HATS rich client transformations implement the
com.ibm.hats.rcp.transform.IPrePostSubmitHandler interface which provides the
ability to control what happens immediately before and after a request is made to
the HATS runtime when a specific transformation is displayed. The primary
function of this interface is to give you the opportunity to validate values supplied
on a transformation by a user before a request is made to the HATS runtime. If a
problem is found with one or more of the user's responses, you have the ability to
cancel the request, alter the parameters, alter the command, and display a message
to the user.

Note: Validation should be performed in the handlePreSubmit method of your
transformation class, since this method is called just before a request is
made to the HATS runtime. Once the request has been made, you cannot
alter or cancel it.

The following sample shows how to perform validation on input provided by the
user. If an invalid value is specified, the submission is cancelled and a message is
displayed to the user.

If the handlePreSubmit method has not been overridden in your transformation
class, following these steps:
1. Right-click on the source of the transformation (in the Java Editor) and select

Source > Override/Implement Methods

2. Expand the RcpTransformation node and place a check next to
handlePreSubmit(CommandEvent) and click OK.

3. A stub method is inserted into the transformation source (based on your Java
code style preferences, your sample code may not look like the following):

public void handlePreSubmit(CommandEvent event) {
// TODO Auto-generated method stub
super.handlePreSubmit(event);

}

The following code sample shows how to perform a range check on a hypothetical
part quantity field. If the quantity supplied by the user is not greater than 500, a
message is displayed and the submission is cancelled. It is assumed that this field
resides at row 4, column 20 of the host screen that is being transformed by this
transformation. Replace your existing handlePreSubmit(CommandEvent) method
with the following:

public void handlePreSubmit(CommandEvent event) {
// Avoid validation if the user is attempting to disconnect the session
if (event.getCommand().equals(RuntimeConstants.CMD_DISCONNECT)) {

return;
}

Chapter 4. Transformations 25

// Retrieve the value of the "quantity" field using the
// IHostScreenDataAccessService interface
// (which is accessed by calling the getHostScreenDataAccessService()
// method on the session service)
// The getFieldValue() method takes three parameters
//
// Returns the value of host screen field at the specified position.
//
// @param startPos The start position of the field.
// @param offset The offset position of the field.
// @param length The length of the field.
//
// @return The value of the host screen field.
//
// The Component.convertRowColToPos() method converts a row, column value
// into a linear screen position.
// "5" indicates the length of the field.
String quantityString = getSessionService().

getHostScreenDataAccessService().
getFieldValue(Component.convertRowColToPos(4, 20,
getHostScreen().getSizeCols()),0, 5);

// Convert the numeric string into an int
int quantity = 0;
try {

quantity = Integer.parseInt(quantityString);
} catch (Exception ex) {
}

// Check to ensure the quantity entered is greater than 500
if (quantity < 500) {

// Display a message to the user indicating what the problem is
MessageDialog.openError(getShell(),

getSessionService().getApplication().getName(),
"You must order at least 500 units.");

// Cancel the event (this prevents the request from being made)
event.setCanceled(true);

}
}

Customizing the host keypad
v The following code sample shows how to hide the host keypad:

public IHostKeypadDisplayInfo getHostKeypadDisplayInfo() {
HostKeypadDisplayInfo displayInfo = new HostKeypadDisplayInfo();
displayInfo.setKeypadVisible(false);
return displayInfo;

}

The default implementation of this method returns null, indicating to the HATS
runtime that the settings defined in the project settings should be used to show
(or not show) the host keypad (and to determine which keys to show). By
overriding this method and returning a value other than null, the HATS
runtime will use this HostKeypadDisplayInfo object when the transformation is
applied during runtime.

v The following code sample shows how to show only the Enter and F1/Help
keys on a host keypad:
public IHostKeypadDisplayInfo getHostKeypadDisplayInfo() {
// Construct an array of keys to include on the keypad

KeypadKey[] keysToDisplay = new KeypadKey[] {
new KeypadKey("[enter]", "Enter"),
new KeypadKey("[pf1]", "Help") };

26 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

// Construct and return the keypad display info object
return new HostKeypadDisplayInfo(keysToDisplay, true,

IHostKeypadDisplayInfo.DISPLAY_BUTTON);
}

Customizing the application keypad
The application keypad can be customized at the transformation-level by
overriding the getApplicationKeypadDisplayInfo() method of the transformation
and returning an object of type IApplicationKeypadDisplayInfo.

The following code sample shows how the getApplicationKeypadDisplayInfo()
method can be overwritten to expose "Page down" and "Page up" to the
application keypad when this transformation is applied:
public IApplicationKeypadDisplayInfo getApplicationKeypadDisplayInfo() {
// Define the extra keys
KeypadKey[] extraKeys = new KeypadKey[] {

new KeypadKey(ECLConstants.PAGEDWN_STR, "Page Down"),
new KeypadKey(ECLConstants.PAGEUP_STR, "Page Up") };

// Construct a new ApplicationKeypadDisplayInfo object using the project-level
// settings and the new keys

Application app = getSessionService().getApplication();
Properties appKeypadSettings = app.getDefaultSettings

(ApplicationKeypadConstants.SETTINGS_ID);
ApplicationKeypadDisplayInfo info = new ApplicationKeypadDisplayInfo

(appKeypadSettings, extraKeys);

return info;
}

To customize the application keypad at the application-level, the
getApplicationKeypadDisplayInfo() method of your transformation view class
"MainView" can be overwritten. See “Transformation view” on page 15 for more
information.

Overriding the default monospaced font
This code example causes a smaller font size to be used if the host screen has 132
columns, instead of the standard 80:
public Font getDefaultMonospacedFont() {

if (getHostScreen() != null) {
if (getHostScreen().getSizeCols() == 132) {

return FontManager.getInstance(getDisplay()).getFont("Courier New", 8, 0);
}

}

return null;
}

Integrating other user interface widgets
The samples in this section require that you add the org.eclipse.emf.common
plug-in to your rich client project's dependency list. To do this:
1. Open the plug-in manifest file for your project.
2. On the Dependencies tab, click Add and select org.eclipse.emf.common.
3. Save the file.

Binding a SWT Slider widget to a host input field
A slider is a control that enables a user to select a numeric value from a range of
values. For example, on the OS/400® main menu, you can use the slider to make a
selection.

Chapter 4. Transformations 27

Using the palette, add a SWT Slider widget to your transformation. Override the
postRender() method of the RcpTransformation class. Add the following code to
the postRender() method:
// The following code creates 2 adapters : a FieldAdapter that adapts to a
// Host Screen field located at a specific position, an IControlAdapter that
// adapts to a Slider widget, and bind these 2 adapters so that when slider
// selection is changed, its selection value is updated in the model, and
// when the data in the model is changed, the slider selection is updated.
// In this example, we bind to the a host screen field located at
// position (20,007).

final RcpContextAttributes attrs = (RcpContextAttributes)
getContextAttributes();

HostScreenDataModelManager dataModelManager = attrs.
getHostScreenDataModelManager();

HostScreenModelAdapterFactory factory = (HostScreenModelAdapterFactory)
dataModelManager.getModelAdapterFactory();

final IModelAdapter modelAdapter = factory.getFieldAdapter(1527);
IControlAdapter sliderAdapter = new SliderWidgetAdapter(slider,dataModelManager);
dataModelManager.bindControlToModel(sliderAdapter, modelAdapter);

Example of the SliderWidgetAdapter class
//This class allows the slider widget to update a host field with its values and
//also update its value from a host field.
public class SliderWidgetAdapter implements IControlAdapter {

private Slider slider; //the target slider widget.
private IDataModelManager dataModelManager; //handles updating values in the model

public SliderWidgetAdapter(Slider slider,IDataModelManager dataModelManager) {
this.slider = slider;
this.dataModelManager = dataModelManager;

//create a SelectionListener such that when the value of the slider
//is changed, it updates the host field.
this.slider.addSelectionListener(new SelectionListener()
{
public void widgetDefaultSelected(SelectionEvent event) {
}

public void widgetSelected(SelectionEvent event) {
updateModel();

}
});

}

//this method calls the updateModel from the IDataModelManager to
//update the host field.
private void updateModel() {
if (dataModelManager != null)
dataModelManager.updateModel(this);

}

//return the value of slider selection.
public String getValue() {
return slider.getSelection() + "";

}

//this method updates the slider selection from a value. This method
// is called when the value of a host field is changed.
public void setValue(String value) {
try {
slider.setSelection(Integer.parseInt(value));

}
catch (NumberFormatException e) {

28 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

slider.setSelection(0);
}

}
}

Chapter 4. Transformations 29

30 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Chapter 5. Templates

Like a rich client transformation, a rich client template is a Java class. It extends
from the com.ibm.hats.rcp.ui.templates.RcpTemplate class, which extends from
org.eclipse.swt.widgets.Composite. A template can contain SWT widgets, macro
controls, and host and application keys. Because a template is an SWT composite,
non-HATS widgets can be added to the template.

A template cannot contain host components (ComponentRendering composites),
default rendering composites, or global variable controls, while a transformation
can contain them.

You can create a template by extending one of the predefined templates that HATS
provides. A template defines the basic layout and style of an application, such as:
v Foreground and background colors used for transformations
v Fonts to be used for transformations
v Static labels, such as a logo image
v Links, such as to a corporate home page

Table 9 lists the methods that can be overridden by the RcpTemplate class.

Table 9. RcpTemplate methods

Method Description

getDefaultFont() Returns the default font to be used by
widgets.

getDefaultMonospacedFont() Allows you to override the default
monospaced font at the template level.

getDefaultBackgroundColor() Returns the default background color for the
template.

getDefaultForegroundColor() Returns the default foreground color for the
template.

getColorMapper() Returns an IColorMapper object that
controls how host colors are mapped to
colors on the view.

getTableColorProvider() Returns an ITableColorProvider object that
controls what colors are used for table
controls.

getContentContainer() Returns the composite that will be the
parent of transformations or other
composites displayed on the template.

Refer to the HATS Rich Client Platform API reference for more information on
these methods.

The HATS runtime is responsible for constructing and disposing of templates.
HATS runtime performs the following steps:
1. Constructs a new instance of the specified template class. This class must be a

descendent of RcpTemplate, meaning that it must extend from RcpTemplate or
from a class that extends from RcpTemplate.

© Copyright IBM Corp. 2007, 2015 31

2. Constructs a new instance of the transformation class.
3. Calls the setContent() method of the template instance, passing it the

transformation instance. This method calls the applyStyleToComposite()
method of the transformation instance

4. Calls the setContent() method of the transformation view instance, passing it
the template instance.

Editing templates
Templates in HATS rich projects are Java SWT composites and you can edit them
manually using Java Editor or any text editors. You can find the templates in the
HATS Projects view under Rich Client Content > Templates.

By default, the templates shipped by HATS return the background color,
foreground color, and font of the template class for the methods of RcpTemplate. It
is recommended that you use the Properties view in the Visual Editor to update
the background color, foreground color, and font of the template if you implement
the IRcpTemplate interface.

Note: As documented in the Eclipse API reference, you must dispose of Image,
Color, and Font objects that you create. You should not dispose of a color
retrieved using the Display.getSystemColor() method, since you did not
create it. For non-standard colors, it is recommended that you use the
ColorManager class provided by HATS. This class manages the creation,
caching, and disposing of colors. You should not dispose of colors created
by the ColorManager. A FontManager class is also provided, which works
similarly to the ColorManager class, except that it manages fonts.

Samples

Customizing host color mappings
The mapping of host colors to colors on the view are controlled by the
IColorMapper object returned by the getColorMapper() method of the template
class. The default implementation of this method returns an object of type
DefaultColorMapper. The following color mapper classes are provided by HATS:
v com.ibm.hats.rcp.ui.templates.DefaultColorMapper
v com.ibm.hats.rcp.ui.templates.WhiteBackgroundColorMapper

DefaultColorMapper should be used by templates that have a non-white
background color since it maps the color of white host fields to white.
WhiteBackgroundColorMapper should be used by templates that have a white or
light background color since it maps the color of white host fields to black and
uses darker colors (compared to the default color mapper).

The mapColor() method of the IColorMapper object is responsible for mapping a
host color to an SWT RGB value. This method is typically called from the HATS
field widget when the Enable foreground colors setting is enabled. Table 10 lists
the possible host color values that can be supplied to this method.

Table 10. Colors supplied to the mapColor method

Host Color Description

0 Blank

1 Blue

32 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|

Table 10. Colors supplied to the mapColor method (continued)

Host Color Description

2 Green

3 Cyan

4 Red

5 Magenta

6 Brown (3270), Yellow (5250)

7 White (normal intensity)

8 Gray

9 Light blue

10 Light green

11 Light cyan

12 Light red

13 Light magenta

14 Yellow

15 White (high intensity)

There are two approaches for altering how colors are mapped by your template:
1. Create a class that implements the IColorMapper interface, implement the

mapColor() method, and update your template to return a new instance of this
class

2. Create a class that extends from one of the provided color mapper classes,
override the mapColor() method, and update your template to return a new
instance of this class.

If you choose to extend one of the classes provided by HATS, you will need to
override the mapColor() method. The following code sample shows how to change
the color for blue (host color 1) and magenta (host color 5) host fields:
public class MyCustomColorMapper extends DefaultColorMapper {

public RGB mapColor(int hostColor) {
RGB rgb = null;

if (hostColor == 1) {
rgb = new RGB(100, 100, 100);
} else if (hostColor == 5) {
rgb = new RGB(255, 0, 0);
} else {
rgb = super.mapColor(hostColor);
}

return rgb;
}

}

The following code sample shows how to implement the getColorMapper() method
of your template class to return your custom color mapper.

Notes:

1. This method might already exist in your template. If so, replace the current
method with the following:

Chapter 5. Templates 33

public IColorMapper getColorMapper() {
return new MyCustomColorMapper();

}

2. Color mappings are controlled at the template level. If you need to alter how
colors are mapped at the transformation level, you need to create a new
template, which can extend your existing template, and configure your screen
customizations to use this template.

Removing borders from input fields
To remove borders from input fields rendered by HATS widgets, you can override
the getControlStyleClass(Class) method of your template and return 0 when the
specific class is the SWT Text widget class (org.eclipse.swt.widgets.Text).

To override the getControlClassStyle() method, do the following:
1. Click in the Source editor pane.
2. Click Select Source > Override/Implement Methods.
3. Under RcpTemplate, select the getControlClassStyle checkbox.
4. Click Ok.

Add the following code to the getControlClassStyle() method:
if (controlClass.equals(org.eclipse.swt.widgets.Text.class)) {

return 0;
} else {
return super.getControlClassStyle(controlClass);
}

34 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Chapter 6. Runtime services

A set of services, collectively called the HATS Runtime Services, are provided as an
interface to the HATS runtime, HATS rich client applications, and running
application instances. Using this set of provided APIs is the recommended method
of interaction with the HATS runtime, since you don't need to be concerned with
the underlying details.

Table 11 describes the types of services provided. There is only one instance of the
runtime service and client service per Eclipse environment, but there can be
multiple instances of the application service (since multiple HATS rich client
applications can be installed into an Eclipse environment) and the session service
(since a user can start multiple sessions, or application instances).

Table 11. Provided services

Service Description Scope

Runtime Provides runtime-related
services, such as runtime
initialization, creating new
client sessions, providing
access to the connection
manager and application
manager classes.

One per Eclipse
environment.

Application Provides interface for
retrieving information about
the HATS rich client
application.

One per HATS rich client
plug-in application.

Client Provides interface for
retrieving information about
a client or user.

One per Eclipse
environment.

Session Provides interface for
interacting with HATS
runtime on behalf of a
particular application
instance / host connection.

One per running application
instance.

Note: Service classes should not be extended.

Note: For code examples in the following sections, the following imports might be
needed:
import java.util.Collection; import java.util.Iterator;
import com.ibm.hats.rcp.runtime.RcpRuntimePlugin;
import com.ibm.hats.runtime.services.IApplicationService;
import com.ibm.hats.runtime.services.IClientService;
import com.ibm.hats.runtime.services.IRuntimeService;
import com.ibm.hats.runtime.services.IServiceManager;
import com.ibm.hats.runtime.services.ISessionService;
import com.ibm.hats.runtime.services.ServiceType;

© Copyright IBM Corp. 2007, 2015 35

Accessing the service manager
All services are created and maintained by a single service manager (which
implements the com.ibm.hats.runtime.services.IServiceManager interface). Service
objects should not be constructed outside of the service manager. The following
code sample shows how to access the service manager:
IServiceManager serviceManager = RcpRuntimePlugin.getDefault().getServiceManager();

Table 12 identifies the methods that can be called by the IServiceManager object.

Table 12. IServiceManager methods

Method Description

addServiceManagerListener(ServiceManagerListener) Adds a listener to this service
manager.

removeServiceManagerListener(ServiceManagerListener) Removes a listener from this service
manager.

getApplicationService(String) Returns the IApplicationService
corresponding to the specified
application plug-in ID.

getClientService(String) Returns the IClientService
corresponding to the specified client
ID (in the rich client, the client ID is
always the value of
RcpRuntimeService.rcpClientId).

getRuntimeService() Returns the IRuntimeService for the
environment.

getSessionService(String, String, String) Returns the ISessionService
corresponding to the specified client
ID, application plug-in ID, and view
ID.

getServiceIDs(ServiceType) Returns a set of IDs corresponding to
services managed by this service
manager with the specified service
type
getServiceEntryCount(ServiceType).

getServiceEntryCount(ServiceType) Returns the number of services
managed by this service manager with
the specified type.

See the com.ibm.hats.runtime.services.IServiceManager API for more information.

Using the runtime service
The runtime service, which implements the
com.ibm.hats.runtime.services.IRuntimeService interface, provides methods for
interacting with the HATS runtime. Most of the methods provided on this service
should not be called directly, but are made public so other components of the
HATS runtime can communicate. The runtime service object for an application
should be retrieved from the service manager. Sample code to retrieve the runtime
service:
IRuntimeService runtimeService =

serviceManager.getRuntimeService();

The following methods can be called by the runtime service:

36 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Table 13. IRuntimeService methods

Method Description

getConnectionManager() Returns the default ConnMgr instance.

getServiceManager() Returns the service manager that
instantiated this service.

Using the application service
The application service, which implements the
com.ibm.hats.runtime.services.IApplicationService interface, provides methods for
retrieving information related to a HATS rich client application. Each HATS rich
client application plug-in installed and enabled in the Eclipse environment will
have an associated IApplicationService object. The application service object for an
application should be retrieved from the service manager. Sample code to retrieve
the application service:
IApplicationService applicationService =

serviceManager.getApplicationService("myPluginId");

The getApplicationService(String) method will return null if the specified
application ID is invalid or the plug-in failed to start.

Table 14 identifies the methods that can be called by the IApplicationService object.

Table 14. IApplicationService methods

Method Description

getApplication() Returns an Application object which
contains information about the application.
This object is not guaranteed to be
synchronized with the application.hap file,
and the use of the object returned by this
method should only be used to retrieve
information. Do not use this object to alter
any settings.

getApplicationId() Returns the application identifier.

getConfig() Returns the configuration.

getRuntimeService() Returns the runtime service.

getServiceManager() Returns the service manager that
instantiated this service.

Using the client service
The client service, which implements the
com.ibm.hats.runtime.services.IClientService interface, provides methods for
retrieving information related to the client service. Sample code to retrieve the
client service:
IServiceManager serviceManager = RcpRuntimePlugin.getDefault().getServiceManager();
IClientService clientService = serviceManager.getClientService(“theClientId”);

Table 15 on page 38 identifies the methods that can be called by the IClientService
object.

Chapter 6. Runtime services 37

Table 15. IClientService methods

Method Description

getClientId() Returns the client identifier, or ID. In the
rich client, this is always the value of
RcpRuntimeService.rcpClientId.

getRuntimeService() Returns the runtime service.

getServiceManager() Returns the service manager that
instantiated this service.

getSession(String) Returns the specified session.
Note: This is the host session of type
ISession, not the session service instance.

Using the session service
The session service, which implements the
com.ibm.hats.runtime.services.SessionService interface, provides methods for
interacting with an instance of a HATS rich client application. Each running
application instance, for example, a transformation view instance, has an associated
session service. There is a one-to-one mapping between a transformation view
instance and a session service.

Sample code for retrieving the complete collection of session services:
IServiceManager serviceManager =

RcpRuntimePlugin.getDefault().getServiceManager();
Collection sessionServices =

serviceManager.retrieveServiceEntries(ServiceType.SESSION);
Iterator itSessionServices =

sessionServices.iterator();
while (itSessionServices.hasNext())
{
ISessionService aSessionService =

(ISessionService) itSessionServices.next();
// Your custom code goes here
}

Table 16 identifies the methods that can be called by the ISessionService object
representing an instance of an application.

Table 16. ISessionService methods

Method Description

addPresentationListener
(IPresentationListener)

Adds the specified presentation listener to the
list. Listeners are notified when the
presentation is updated.

addSessionServiceListener
(ISessionServiceListener)

Adds the specified session service listener to
the list. Listeners are notified when the state of
the session has changed or when a command is
about to be sent.

canSendCommand(String) Returns a boolean value of true if the current
session service state can send the specified
command, otherwise returns a boolean value of
false.

38 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Table 16. ISessionService methods (continued)

Method Description

disconnect() Disconnects the host session. This method is
called by the Disconnect button on the
Application keypad. The associated
transformation view is not closed by this
method. This method will perform no action if
the session service is already processing a
command.

getApplication() Returns the application associated with this
session service instance. The use of the object
returned by this method should only be used to
retrieve information. Do not use this object to
alter any settings.

getApplicationId() Returns the application ID (for example, the
plug-in ID) of the application associated with
this session service.

getApplicationService() Returns the application service associated with
this session service instance.

getClientId() Returns the client ID associated with this
session service instance.

getCurrentState() Returns the current state of this session service
instance.

getHostScreen() Returns the host screen associated with this
session service instance. This returns the last
host screen processed by the HATS runtime,
not necessarily the current host screen.

getHostScreenDataAccessService() Returns the model containing the values of host
field-associated controls on the form. This
method is only applicable when a
transformation is currently being displayed on
the view.

getLocale() Returns the locale that should be used to
display messages. This locale might be different
than the locale of the Eclipse environment if
you have changed the client locale settings in
the Project Settings editor for the application.

getMacroPromptDataAccessService() Returns the service used to access the model
data.

getParameterDataAccessService() Returns the model containing the values of
non-host field-associated controls on the form.
This service is used to set and retrieve other
form values, such as global variable values, that
will be passed to the HATS runtime when the
current form is submitted.

getRuntimeService() Returns the runtime service.

getServiceManager() Returns the service manager that instantiated
this service.

getSession() Returns the host session associated with this
session service instance.

getSessionServiceState() Returns the session service state as a state
object.

getViewId() Returns the transformation view instance ID.

Chapter 6. Runtime services 39

Table 16. ISessionService methods (continued)

Method Description

isAsyncUpdateEnabled() Returns a boolean value of true if asynchronous
update is enabled; otherwise returns a boolean
value of false.

isCommandSupported(String) Returns a boolean value of true if the specified
command is supported; otherwise returns a
boolean value of false.

playMacro(String) Plays the specified macro.

playMacro(String, Properties) Plays the specified macro and passes values for
any prompts defined in the macro.

removePresentationListener
(IPresentationListener)

Removes the specified presentation listener
from the list.

removeSessionServiceListener
(ISessionServiceListener)

Removes the specified session service listener
from the list.

sendCommand(String) Sends the specified command. Common
commands are: [pf1], [pf2], [enter], [fldext].
Note: The square brackets around some
commands are required.

sendCommand(String, Properties) Sends the command specified by String along
with the associated properties. A command is
either a Host On-Demand mnemonic, such as
[enter], or a HATS command, such as default.
Additional parameters can be specified. These
parameters are included in the request that gets
submitted. These parameters override any
parameters of the same name that are collected
from the SDO model, such as host input fields,
or global variables. Override parameter values
should be of type String[].

sendContinue() Sends a continue command. This command
must be sent to continue from a show
composite action or a macro prompt action.

sendEnter() Sends the Enter key command.

sendF1() - sendF24() Sends the respective PF key command.

sendRefresh() Sends the Refresh command.

sendShowDefault() Sends the Show default command.

start(Properties) Start the session service using the specified
connection and global variable overrides.

stop() Stops the session service.

updatePresentation(IPresentable) Updates the presentation (generally the
transformation view) with the specified
presentable.

The associated ISessionService object for a transformation view can be retrieved by
calling the getSessionService() method on the view. This method is provided by
the ITransformationView interface, which is implemented by the base
TransformationView class.

40 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Integration with other Eclipse UI views
By using the Runtime Services APIs, HATS transformation views, or HATS rich
client applications, can communicate with other Eclipse UI views, or non HATS
rich client applications. This communication can be either incoming or outgoing
with respect to the HATS application. Incoming communication is defined as a
HATS rich client session receiving data or commands from an entity external to
HATS. Outgoing communication is defined as a HATS rich client session sending
data or commands to an external entity. This functionality enables pertinent data to
be retrieved from multiple sources and displayed in a single view. Therefore, the
HATS rich client application can either be the view receiving and displaying data
from other Eclipse rich client applications or the application providing data to one
or more Eclipse rich client applications for display.

An incoming communication scenario
In the following scenario, assume that you have a host application that takes a
flight number for input and displays information about that flight. This application
has been transformed into a HATS RCP application. Another Eclipse RCP-based
application takes reservation information including the flight number. When the
flight number is entered into this application, it can be transmitted to the HATS
RCP application causing the HATS view to be updated with information for that
flight number. The following is a code example for this scenario:
IServiceManager serviceManager = RcpRuntimePlugin.getDefault().getServiceManager();
IClientService clientService = serviceManager.getClientService(“theClientId”);

/*--
//
// Provides an example of a HATS application receiving information from another
// application. This example cannot be executed directly but is provided to
// highlight the approach required to achieve this functionality.
//
// @param Flight number from GUI as a Java String. This value cannot be
// <code>null</code>.
//
*///--

public void inboundToHATSApplication(String flightNumber)
{

// Save flight number from GUI
Properties params = new Properties();

params.setProperty("fltNum", flightNumber);

// Get the service manager from singleton plug-in instance.
IServiceManager serviceManager =

RcpRuntimePlugin.getDefault().getServiceManager();

// This will be the plug-in session we use to play our macro
ISessionService aSessionService = null;

// Find the correct HATS plug-in session
Collection sessionServices =

serviceManager.retrieveServiceEntries(ServiceType.SESSION);
Iterator itSessionServices = sessionServices.iterator();

while (itSessionServices.hasNext())
{

aSessionService = (ISessionService) itSessionServices.next();

// Assumes the first instance of the HATS plug-in called "myApp"
// is the one we want.
if ("myApp".getApplicationId().equals(aSessionService))
{

Chapter 6. Runtime services 41

break;
}

}

// Refer to documentation to see how to launch an RCP plug-in instance if
// one is not already launched
if (aSessionService != null)
{

// Really should check the state in a limited-time loop,
// but let’s assume we can go ahead
if (aSessionService.getSessionServiceState().isOperational())
{

// Ask HATS session service to play the macro with the fltNum
// from our GUI
// Assumes that the macro can start from current screen or from
// the results screen.
aSessionService.playMacro("displayFlightInfo", params);

}
}

}

Samples

Sample class and methods showing how to access the
different runtime services

/*---
//
// Host Access Transformation Services technology
//
// Module Name: RuntimeServicesExamples.java
//
// Description: Provides java code samples for accessing HATS Rich Client Program
// Runtime Services.
//
*///---

package com.ibm.hats;

import java.util.Collection;
import java.util.Iterator;

import com.ibm.hats.rcp.runtime.RcpRuntimePlugin;

import com.ibm.hats.runtime.services.IApplicationService;
import com.ibm.hats.runtime.services.IClientService;
import com.ibm.hats.runtime.services.IRuntimeService;
import com.ibm.hats.runtime.services.IServiceManager;
import com.ibm.hats.runtime.services.ISessionService;
import com.ibm.hats.runtime.services.ServiceType;

//---

/** <code>
* Class Name: RuntimeServicesExamples

* Class Type: Normal

* Base Class: None

* Intf Class: None

* Description: </code> Rich Client Program Runtime Services java code samples.
*///---
public class RuntimeServicesExamples
{

//-----------------------------| Constants |-----------------------------------

42 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

//-----------------------------| Variables |-----------------------------------

//---
/**
* The default constructor.
*///---
public RuntimeServicesExamples()
{

super();
}

//---
/**
* Provides an example of accessing each application service.
*///---
public void accessApplicationService()
{

Collection applicationServices = this.retrieveApplicationServices();

Iterator itApplicationServices = applicationServices.iterator();

while (itApplicationServices.hasNext())
{

IApplicationService aApplicationService = (IApplicationService)
itApplicationServices.next();

// Custom code goes here
}

}

//---
/**
* Provides an example of accessing each client service. Currently, there is
// only one.
*///---
public void accessClientService()
{

Collection clientServices = this.retrieveClientServices();

Iterator itClientServices = clientServices.iterator();

while (itClientServices.hasNext())
{

IClientService aClientService = (IClientService)
itClientServices.next();

// Custom code goes here
}

}

//---
/**
* Provides an example of accessing each runtime service. Currently, there is
// only one.
*///---
public void accessRuntimeService()
{

Collection runtimeServices = this.retrieveRuntimeServices();

Iterator itRuntimeServices = runtimeServices.iterator();

while (itRuntimeServices.hasNext())
{

IRuntimeService aRuntimeService = (IRuntimeService)
itRuntimeServices.next();

// Custom code goes here

Chapter 6. Runtime services 43

}
}

//---
/**
* Provides an example of accessing each session service.
*///---
public void accessSessionService()
{

Collection sessionServices = this.retrieveSessionServices();

Iterator itSessionServices = sessionServices.iterator();

while (itSessionServices.hasNext())
{

ISessionService aSessionService = (ISessionService)
itSessionServices.next();

// Custom code goes here
}

}

//---
/**
* Retrieve the client service.
*
* @return The client service.
*///---
public IClientService getClientService(final String clientId)
{

return this.getServiceManager().getClientService(clientId);
}

//---
/**
* Retrieve the runtime service.
*
* @return The runtime service.
*///---
public IRuntimeService getRuntimeService()
{

return this.getServiceManager().getRuntimeService();
}

//---
/**
* Retrieve the service manager.
*
* @return The service manager.
*///---
public IServiceManager getServiceManager()
{

return RcpRuntimePlugin.getDefault().getServiceManager();
}

//---
/**
* Provides an example of retrieving a Collection of current application
* service objects.
*
* @return A Collection of current application service objects.
*///---
public Collection retrieveApplicationServices()
{

IServiceManager manager = this.getServiceManager();

Collection applicationServices = manager.retrieveServiceEntries(

44 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

ServiceType.APPLICATION);

return applicationServices;
}

//--
/**
* Provides an example of retrieving a Collection of current client service
* objects. Currently, there is only one.
*
* @return A Collection of current client service objects.
*///--
public Collection retrieveClientServices()
{

IServiceManager manager = this.getServiceManager();

Collection clientServices = manager.retrieveServiceEntries(
ServiceType.CLIENT);

return clientServices;
}

//---
/**
* Provides an example of retrieving a Collection of current runtime service
* objects. Currently, there is only one.
*
* @return A Collection of current runtime service objects.
*///---
public Collection retrieveRuntimeServices()
{

IServiceManager manager = this.getServiceManager();

Collection runtimeServices = manager.retrieveServiceEntries(
ServiceType.RUNTIME);

return runtimeServices;
}

//---
/**
* Provides an example of retrieving a Collection of current session service
* objects.
*
* @return A Collection of current session service objects.
*///---
public Collection retrieveSessionServices()
{

IServiceManager manager = this.getServiceManager();

Collection sessionServices = manager.retrieveServiceEntries(
ServiceType.SESSION);

return sessionServices;
}

//---
/**
* Provides an example of turning off border rendering for all input fields.
*
*
*///---
public int getControlClassStyle(class controlClass)
{

if (controlClass.equals(Text.class))
{

return 0;// super.getControlClassStyle(controlClass);
}

Chapter 6. Runtime services 45

else
{

return super.getControlClassStyle(controlClass);
}

}

Listening for 3270 Print Jobs
The following example shows how you can use the service manager to enable your
plugin to listen for 3270 print job events. These changes are made to the RCP
application plugin class:
1. Implement ServiceManagerListener, ISessionServiceListener, and

IPrintJobManagerChangeListener

2. Implement the ServiceManagerListener method public void
serviceChanged(ServiceManagerEvent event). This method is called when the
service manager changes. In this example, it is used to determine when a new
session has been created or destroyed. When a new session is created, add
yourself as a listener. When a session is destroyed, remove yourself as a
listener.

3. Implement the ISessionServiceListener methods
v public void sessionStateChanged(StateChangeEvent event) - This method

is called when the state of the session changes. Use this method to find the
sessions print job manager and add yourself as a listener to it.

v public void aboutToProcessCommand(CommandEvent event) - This method is
left empty for this example.

v public void afterProcessCommand(CommandEvent event) - This method is left
empty for this example.

4. Implement the IPrintJobManagerChangeListeners
v public void addPrintJob(PrintJobManager printJobManager, PrintJob

printJob) This method is called when a print job has been added to the
print job manager.

v public void removePrintJob(PrintJobManager printJobManager, PrintJob
printJob) This method is called when a print job is removed from the print
job manger (deleted).

v public void updatePrintJob(PrintJobManager printJobManager, PrintJob
printJob) This method is called when a print job is updated.

5. Add yourself as a service manager listener in the start() method of your
application plug-in.

6. Remove yourself as a service manager listener in the stop() method of your
application plug-in.

package printExample;

import java.util.HashSet;

import org.eclipse.jface.resource.ImageDescriptor;
import org.osgi.framework.BundleContext;

import com.ibm.hats.rcp.runtime.RcpRuntimePlugin;
import com.ibm.hats.rcp.ui.AbstractRcpApplicationPlugin;
import com.ibm.hats.runtime.ApplicationSpecificInfo;
import com.ibm.hats.runtime.ClientSpecificInfo;
import com.ibm.hats.runtime.IPrintJobManagerChangeListener;
import com.ibm.hats.runtime.PrintJob;
import com.ibm.hats.runtime.PrintJobManager;
import com.ibm.hats.runtime.PrintResourceHandler;
import com.ibm.hats.runtime.PrintSpecificInfo;
import com.ibm.hats.runtime.events.CommandEvent;

46 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

import com.ibm.hats.runtime.events.ISessionServiceListener;
import com.ibm.hats.runtime.events.ServiceManagerEvent;
import com.ibm.hats.runtime.events.ServiceManagerListener;
import com.ibm.hats.runtime.events.StateChangeEvent;
import com.ibm.hats.runtime.services.IService;
import com.ibm.hats.runtime.services.IServiceManager;
import com.ibm.hats.runtime.services.ISessionService;
import com.ibm.hats.util.StateType;

/**
* The activator class controls the plug-in life cycle
*/
public class PrintExamplePlugin extends AbstractRcpApplicationPlugin implements

ServiceManagerListener, ISessionServiceListener,
IPrintJobManagerChangeListener

{
// The plug-in ID
public static final String PLUGIN_ID = "PrintExample";

// The shared instance
private static PrintExamplePlugin plugin;

// The service manager
private IServiceManager serviceManager = null;

// The print managers we are listeners for
private HashSet printJobManagers = new HashSet();

/**
* The constructor
*/
public PrintExamplePlugin()
{

plugin = this;

System.out.println("PrintExamplePlugin: ctor");
}

/*
* (non-Javadoc)
*
* @see org.eclipse.ui.plugin.AbstractRcpApplicationPlugin#
* start(org.osgi.framework.BundleContext)
*/
public void start(BundleContext context) throws Exception
{

super.start(context);

// Add the service manager listener
serviceManager = RcpRuntimePlugin.getDefault().getServiceManager();
serviceManager.addServiceManagerListener(this);

}

/*
* (non-Javadoc)
*
* @see org.eclipse.ui.plugin.AbstractRcpApplicationPlugin#stop(org.osgi.
* framework.BundleContext)
*/
public void stop(BundleContext context) throws Exception
{

plugin = null;

// Remove the service manager listener
if (serviceManager != null)

serviceManager.removeServiceManagerListener(this);

Chapter 6. Runtime services 47

super.stop(context);

}

/**
* Returns the shared instance
*
* @return the shared instance
*/
public static PrintExamplePlugin getDefault()
{

return plugin;
}

/**
* Returns an image descriptor for the image file at the given plug-in
* relative path
*
* @param path
* the path
* @return the image descriptor
*/
public static ImageDescriptor getImageDescriptor(String path)
{

return imageDescriptorFromPlugin(PLUGIN_ID, path);
}

/*
* (non-Javadoc)
*
* @see com.ibm.hats.runtime.IPrintJobManagerChangeListener#
* addPrintJob(com.ibm.hats.runtime.PrintJobManager,
* com.ibm.hats.runtime.PrintJob)
*/
public void addPrintJob(PrintJobManager printJobManager,

PrintJob printJob)
{

System.out.println("PrintExamplePlugin: addPrintJob:
" + printJob.toString());

}

/*
* (non-Javadoc)
*
* @see com.ibm.hats.runtime.IPrintJobManagerChangeListener#
* removePrintJob(com.ibm.hats.runtime.PrintJobManager,
* com.ibm.hats.runtime.PrintJob)
*/
public void removePrintJob(PrintJobManager printJobManager,

PrintJob printJob)
{

System.out.println("PrintExamplePlugin: removePrintJob: "
+ printJob.toString());

}

/*
* (non-Javadoc)
*
* @see com.ibm.hats.runtime.IPrintJobManagerChangeListener#
* updatePrintJob(com.ibm.hats.runtime.PrintJobManager,
* com.ibm.hats.runtime.PrintJob)
*/
public void updatePrintJob(PrintJobManager printJobManager,

PrintJob printJob)
{

System.out.println("PrintExamplePlugin: updatePrintJob: "
+ printJob.toString());

48 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

}

/*
* (non-Javadoc)
*
* @see com.ibm.hats.runtime.events.ServiceManagerListener#
* serviceChanged(com.ibm.hats.runtime.events.ServiceManagerEvent)
*/
public void serviceChanged(ServiceManagerEvent event)
{

IService theService = event.getService();

if (theService instanceof ISessionService)
{

ISessionService sessionService = (ISessionService) theService;

int type = event.getType();
if (type == ServiceManagerEvent.TYPE_SERVICE_CREATED)
{

sessionService.addSessionServiceListener(this);
}
else if (type == ServiceManagerEvent.TYPE_SERVICE_DESTROYED)
{

sessionService.removeSessionServiceListener(this);
}

}
}

/*
* (non-Javadoc)
*
* @see com.ibm.hats.runtime.events.SessionStateListener#
* sessionStateChanged(com.ibm.hats.runtime.events.SessionStateEvent)
*/
public void sessionStateChanged(StateChangeEvent event)
{

// If the session has change to operational then add a listener to
// the PrintJobManager (if there is one and we haven’t already done so).
StateType state = event.getNewState();
if (state == StateType.OPERATIONAL)
{

ISessionService sessionService = event.getSessionService();
ClientSpecificInfo csi = sessionService.getRuntimeService()

.getClientContainer().accessClient(sessionService.getClientId());

if (csi != null)
{

String asiId = ApplicationSpecificInfo.
createCompositeAsiId(sessionService.
getApplicationId(),

sessionService.getViewId());
ApplicationSpecificInfo asi = csi.peekAll(asiId);
if (asi != null)
{

PrintSpecificInfo psi = asi.getPrint();
if (psi != null)
{

PrintResourceHandler prh = psi.getResourceHandler();
if (prh != null)
{

PrintJobManager pjm = prh.getPrintJobManager();

// Add this PrintJobManager to our list of
// PrintJobManagers.
// This will return true if we haven’t encountered
// this PrintJobManager before.
// In this case, add ourselves as a

Chapter 6. Runtime services 49

// listener to this PrintJobManager.
if (printJobManagers.add(pjm))
{

pjm.addChangeListener(this);
}

}
}

}
}

}
}

/*
* (non-Javadoc)
*
* @see com.ibm.hats.runtime.events.ISessionServiceListener#
* aboutToProcessCommand(com.ibm.hats.runtime.events.CommandEvent)
*/
public void aboutToProcessCommand(CommandEvent event)
{
}

/*
* (non-Javadoc)
*
* @see com.ibm.hats.runtime.events.ISessionServiceListener#
* afterProcessCommand(com.ibm.hats.runtime.events.CommandEvent)
*/
public void afterProcessCommand(CommandEvent event)
{
}

}

Creating a custom composite for use with the Show action
SWT Composites referenced in a Show Composite Action should implement the
com.ibm.hats.rcp.transform.IRenderable interface. If the SWT Composite
implements com.ibm.hats.rcp.transform.IRenderable, it will have access to the
RcpContextAttributes that contains, among other things, the ISessionService for the
session the composite is being shown in. A sendContinue() method on the
ISessionService can be called to resume executing the HATS application.

To create a composite using the Visual Editor (see “Editing transformations” on
page 19):
1. Select File > New > Other > Java > Visual Class to start the New Java Visual

Class wizard.
2. Select the src folder for your plug-in project, and enter a name for the new

composite class, for example, MyComposite
3. In the Style tree, select SWT > Composite.
4. Click Add, and select the com.ibm.hats.rcp.transform.IRenderable interface.
5. Click Finish to create the class.

To add a continue button to the composite using the Visual Editor (see “Editing
transformations” on page 19):
1. From the Palette view, open the SWT Controls drawer and select Button.
2. Drag and drop the button on the composite. If prompted, accept the default

name for the variable.
3. Right-click the selected button and select Set Text. Enter a caption for the

button. For example, enter OK or Submit. Click OK.

50 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

4. Right-click the button again and select Events > Add Events. Select Selection >
widgetSelected and click Finish.

5. Replace the temporary contents of the widgetSelected(SelectionEvent)
method with the following:
RcpContextAttributes contextAttributes =

(RcpContextAttributes)getContextAttributes();
ISessionService sessionService = contextAttributes.getSessionService();

sessionService.sendContinue();

Note: You might need to update the import section of your class. To do this, press
CTRL+SHIFT+O or right-click in the source of your class and select Source
> Organize Imports.

Chapter 6. Runtime services 51

52 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Chapter 7. Integrating business logic

Business logic is any Java code that is invoked as an action when an event occurs,
such as a host screen being recognized or your HATS application being started.
Business logic is specific to the application and is not provided as part of HATS.
You can use business logic to extend your HATS application to integrate with other
data sources, such as a database. For example, you can read the contents of a file
or a database into HATS global variables and use the global variables to fill in a
drop-down list or pop-up to be used in the application's GUI pages.

You can create business logic and add it to your project using the Create Business
Logic wizard. To invoke this wizard, right-click in the HATS Projects tab of the
HATS Toolkit, and click New HATS > Business Logic.

In the Create Business Logic wizard, specify the project you want to add the
business logic to and supply the Java class name. The default package name is
projectName.businessLogic, but you can change this in Studio Preferences.
Optionally, you can supply a package name or click Browse to select an existing
Java package. If you want your business logic to include methods for easy access
to the project global variables, or to remove project global variables, select the
Create global variable helper methods check box. Click Finish when you have
provided the required information.

After you create your business logic class, you will want to link it to one or more
screen or application events so it is executed when that event occurs. Edit each
event (application event or screen customization) to which you want to add the
link. On the Actions tab, click Add, select Execute business logic, then fill in the
details for your business logic class. Refer to HATS User's and Administrator's Guide
for information about editing both screen customization and events.

You can see the business logic files in the project by expanding the Source folder
on the HATS Project View tab of the HATS Toolkit. Each package name or class
name appears in the Source folder. Expand the package name folder to see the
Java class name. Click the class name to edit the class. The Source folder can also
include other Java files that have been imported into your HATS project.

If you use the Create Business Logic wizard to create business logic, the method
that is invoked by the execute action is named execute by default. If you write
your own class, the method must have the following attributes:
v Be marked public and static
v Have a return type of void
v Accept a com.ibm.hats.common.IBusinessLogicInformation object as the only

parameter

The method must use this form, followed by your own business logic code:
public static void myMethod (IBusinessLogicInformation businesslogic)

The IBusinessLogicInformation object that is passed to your custom Java code
enables you to access and use or modify various objects and settings of your HATS
project. These include:

© Copyright IBM Corp. 2007, 2015 53

ugscreco.htm

v The com.ibm.hats.runtime.IRequest class, which returns an object representing
the request made to the HATS runtime and provides access to request
parameters.

v The com.ibm.hats.runtime.IResponse class, which returns an object representing
the response from the HATS runtime.

v The getConnectionMap() method, which returns a java.util.Map that contains the
settings for the connection information that you provided for the application.

v The getGlobalVariables() method, which returns a java.util.Hashtable of global
variables for this application instance. This table does not include shared global
variables.

v The getSharedGlobalVariables() method, which returns a java.util.Hashtable of
shared global variables for this application instance.

v Class properties, which provide default settings for objects such as components
and widgets

v The com.ibm.hats.common.HostScreen object, which contains host screen
information

v The java.util.Locale class of the client
v The com.ibm.hats.common.TextReplacementList values and settings
v The client session identifier string (returned by getter methods in the business

logic template that the Create Business Logic wizard provides)
v The current screen orientation of bidirectional sessions
v The existence of the Screen Reverse button in the browser for bidirectional

sessions

For more information about the classes made available to you, see the HATS API
documentation in the HATS Knowledge Center at http://www.ibm.com/support/
knowledgecenter/SSXKAY_9.5.0 for the IBusinessLogicInformation class. Since
IBusinessLogicInformation extends the IBaseInfo class, several of these APIs are
defined in the IBaseInfo class.

Incorporating Java code from other applications
You can incorporate Java code from other existing applications into your HATS
projects in a variety of ways.

If you want to incorporate the source code (.java files) from your existing business
logic so you can modify the code, you can import the .java files into the Source
folder in your existing project. Click File > Import > General > File System to
open the Import wizard. In the Import wizard, select the location of your source
files in the From directory field. For RCP projects, select the src folder of your
project in the destination Into folder entry field. When your source .java files are
imported, they are automatically compiled and packaged into your HATS project.
You can edit, set breakpoints, and debug your source files in the Rational SDP
workbench.

You can also incorporate a Java archive (.jar) file with compiled Java business logic.
The entire Java archive is added; you cannot select individual classes to add.

To import .jar files to RCP projects, use the following steps:
1. Create a directory (usually "lib" or "runtime") (optional).

54 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0
http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0

2. Click File > Import > General > File System to open the Import wizard to
import the .jar file, and select either the directory just created in step 1 or
import to the root of the project if you did not create a directory as indicated in
step 1.

3. Go to the Navigator view, and find the MANIFEST.MF file under the
META-INF directory.

4. Double-click the file to open it in the manifest editor.
5. Go to Runtime tab, and under Classpath section, select Add...,
6. Browse to the imported .jar file, check Update the build path, and click OK.
7. Save the MANIFEST.MF file.

Using global variables in business logic
If your HATS application uses global variables to store information, you can use
these global variables in your business logic.

There are two types of global variables: local and shared. A local global variable is
one that is created within a particular RCP project and is only usable by that
project. A shared global variable is one that is created in one or more RCP projects
and can be used by all the applications running in the same user environment.
There are also two lists of HATS global variables, one for local global variables and
one for shared global variables. Two global variables with the same name can
coexist if one is local and the other is shared.

When you create your business logic class, use the Create Business Logic wizard
and select the Create global variable helper methods check box. This creates
methods in your business logic for getting, setting, and removing local and shared
global variables.

The following methods are created:
//
// This sample is provided AS IS.
// Permission to use, copy and modify this software for any purpose and
// without fee is hereby granted. provided that the name of IBM not be used in
// advertising or publicity pertaining to distribution of the software without
// specific written permission.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SAMPLE, INCLUDING ALL
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL IBM
// BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
// DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
// IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
// OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SAMPLE.
//
/**
* Example method that sets a named global variable
* from the current session to a value
* @param blInfo - IBusinessLogicInformation from current session
* @param name - Name of the global variable
* @param value - Value of the global variable
*/
public static void setGlobalVariable(IBusinessLogicInformation blInfo,

String name,Object value)
{
IGlobalVariable gv = blInfo.getGlobalVariable(name);
if (gv == null)
{
gv = new GlobalVariable(name,value);
}
else
{
gv.set(value);
}
blInfo.getGlobalVariables().put(name,gv);

}

Chapter 7. Integrating business logic 55

/**
* Example method that sets a named shared
* global variable from the current session to a value
* @param blInfo - IBusinessLogicInformation from current session
* @param name - Name of the shared global variable
* @param value - Value of the shared global variable
*/
public static void setSharedGlobalVariable(IBusinessLogicInformation
blInfo,String name,Object value)

{
IGlobalVariable gv = blInfo.getSharedGlobalVariable(name);
if (gv == null)
{
gv = new GlobalVariable(name,value);
}
else
{
gv.set(value);
}
blInfo.getSharedGlobalVariables().put(name,gv);

}

/**
* Example method that removes a named global variable from the current session
* @param blInfo - IBusinessLogicInformation from current session
* @param name - Name of the global variable
*/
public static void removeGlobalVariable(IBusinessLogicInformation blInfo, String name)
{
IGlobalVariable gv = blInfo.getGlobalVariable(name);
if (gv != null)
{
blInfo.getGlobalVariables().remove(name);
gv.clear();
gv = null;
}

}
/**
* Example method that removes a named shared global variable from the current session
* @param blInfo - IBusinessLogicInformation from current session
* @param name - Name of the shared global variable
*/
public static void removeSharedGlobalVariable(IBusinessLogicInformation blInfo, String name)
{
IGlobalVariable gv = blInfo.getSharedGlobalVariable(name);
if (gv != null)
{
blInfo.getSharedGlobalVariables().remove(name);
gv.clear();
gv = null;
}

}
/**
* Example method that retrieves a named global variable from the current session
* @param blInfo - IBusinessLogicInformation from current session
* @param name - Name of the global variable
* @return - an instance of the global variable, or null if not found.
*/
public static IGlobalVariable getGlobalVariable(IBusinessLogicInformation
blInfo,String name)

{
IGlobalVariable gv = blInfo.getGlobalVariable(name);
return gv;

}

/**
* Example method that retrieves a named shared
* global variable from the current session
* @param blInfo - IBusinessLogicInformation from current session
* @param name - Name of the shared global variable
* @return - an instance of the global variable, or null if not found.
*/
public static IGlobalVariable getSharedGlobalVariable(IBusinessLogicInformation
blInfo,String name)

{
IGlobalVariable gv = blInfo.getSharedGlobalVariable(name);
return gv;

}

56 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Elsewhere in your code, when you need the value of a local global variable, you
can call this method:

GlobalVariable gv1 = getGlobalVariable(blInfo,"varname");

To get the value of a shared global variable, use the following method:
GlobalVariable gv1 = getSharedGlobalVariable(blInfo,"varname");

Business logic examples
This section contains examples of using business logic. Each works with global
variables. Each example uses one or more of the global variable helper methods
previously described, and the classes should include those methods. They are
omitted in these examples to make it easier to view the example code.

Example: Date conversion
This example converts a date from mm/dd/yy format to month, day, year format.
For example, the example converts 6/12/2004 into June 12, 2004. The example
assumes that the global variable theDate has been set before the business logic is
called. Note how the example uses the following method to obtain the value of the
input variable:

IGlobalVariable inputDate = getGlobalVariable(blInfo, "theDate");

After using standard Java functions to manipulate the string to represent the date
in the desired format, the example uses the following method to put the new
string into the same global variable:

setGlobalVariable(blInfo, "theDate", formattedDate);
//
// This sample is provided AS IS.
// Permission to use, copy and modify this software for any purpose and
// without fee is hereby granted. provided that the name of IBM not be used in
// advertising or publicity pertaining to distribution of the software without
// specific written permission.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SAMPLE, INCLUDING ALL
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL IBM
// BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
// DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
// IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
// OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SAMPLE.
//
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

import com.ibm.hats.common.IBusinessLogicInformation;
import com.ibm.hats.common.GlobalVariable;
import com.ibm.hats.common.IGlobalVariable;

public class CustomDateFormatter
{

public static void execute(IBusinessLogicInformation blInfo)
{
IGlobalVariable inputDate = getGlobalVariable(blInfo, "theDate");
SimpleDateFormat inputFormat = new SimpleDateFormat("MM/dd/yyyy");
SimpleDateFormat outputFormat = new SimpleDateFormat("MMMM dd, yyyy");

try
{
Date tempDate = inputFormat.parse(inputDate.getString().trim());
String formattedDate = outputFormat.format(tempDate);
setGlobalVariable(blInfo, "theDate", formattedDate);
}
catch (ParseException ex)
{

Chapter 7. Integrating business logic 57

ex.printStackTrace();
}

}
}

Example: Adding values that are contained in an indexed
global variable

This example adds the values that are contained in an indexed global variable and
stores the sum in another, non-indexed global variable. It assumes that you have
stored strings representing numbers in the indexed global variable subtotals.

The previous example included the names of the input and output global variables
(theDate) on the set calls. This example sets the names of the input and output
variables into local string variables and uses those strings on calls to get and set
the global variable values. Because the name of the global variable is being passed
as a variable, it is not put into quotes:

setGlobalVariable(blInfo,gvOutputName, new Float(myTotal));
//
// This sample is provided AS IS.
// Permission to use, copy and modify this software for any purpose and
// without fee is hereby granted. provided that the name of IBM not be used in
// advertising or publicity pertaining to distribution of the software without
// specific written permission.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SAMPLE, INCLUDING ALL
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL IBM
// BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
// DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
// IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
// OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SAMPLE.
//
import com.ibm.hats.common.IBusinessLogicInformation;
import com.ibm.hats.common.GlobalVariable;
import com.ibm.hats.common.IGlobalVariable;

public static void execute(IBusinessLogicInformation blInfo)
{
// Name of indexed global variable to be read in

String gvInputName = "subtotals";
// Name of global variable to be calculated and saved
String gvOutputName = "total";

// The indexed global variable where each index is a subtotal to be summed
GlobalVariable gvSubtotals =

((GlobalVariable)getGlobalVariable(blInfo, gvInputName));

float myTotal = 0;

// Calculate the total by adding all subtotals
for (int i = 0; i < gvSubtotals.size(); i++)
{
myTotal = myTotal + Float.valueOf(gvSubtotals.getString(i)).floatValue();
}

// Save the total as a non-indexed local variable
setGlobalVariable(blInfo,gvOutputName, new Float(myTotal));

}

Example: Reading a list of strings from a file into an indexed
global variable

This example reads a file from the file system and stores the strings in the file into
an indexed global variable. You can use a technique like this to read a file that
contains, for example, a list of your company's locations. After storing the strings
in a global variable, you can use the global variable to populate a drop-down list
or other widget to enable users to select from a list of values. You can create a
global rule to use this widget wherever an appropriate input field occurs. To make

58 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

sure that the global variable is available as soon as the application is started, add
the execute action for this business logic class to the Start event.

Note: If your text file has carriage returns and line feeds between lines, you might
need to use “\r\n” as the second argument of the StringTokenizer
constructor call in the following example.

//
// This sample is provided AS IS.
// Permission to use, copy and modify this software for any purpose and
// without fee is hereby granted. provided that the name of IBM not be used in
// advertising or publicity pertaining to distribution of the software without
// specific written permission.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SAMPLE, INCLUDING ALL
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL IBM
// BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
// DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
// IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
// OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SAMPLE.
//
import com.ibm.ejs.container.util.ByteArray;
import com.ibm.hats.common.IBusinessLogicInformation;
import com.ibm.hats.common.GlobalVariable;
import com.ibm.hats.common.IGlobalVariable;

public class ReadNamesFromFile
{

public static void execute(IBusinessLogicInformation blInfo)
{
// Name of indexed global variable to be saved
String gvOutputName = "namesFromFile";

// The file containing a list of information (in this case, it contains names)
java.io.File myFileOfNames = new java.io.File("C:" + java.io.File.separator

+ "temp" + java.io.File.separator + "names.txt");

try
{

// First, read the contents of the file

java.io.FileInputStream fis = new java.io.FileInputStream(myFileOfNames);

int buffersize = (int)myFileOfNames.length();
byte[] contents = new byte[buffersize];;

long n = fis.read(contents, 0, buffersize);

fis.close();

String namesFromFile = new String(contents);

// Next, create an indexed global variable from the file contents

java.util.StringTokenizer stok =
new java.util.StringTokenizer(namesFromFile, "\n", false);

int count = stok.countTokens();
String[] names = new String[count];
for (int i = 0; i < count; i++)
{
names[i] = stok.nextToken();
}

IGlobalVariable gv = new GlobalVariable(gvOutputName, names);
blInfo.getGlobalVariables().put(gvOutputName,gv);
}
catch (java.io.FileNotFoundException fnfe)
{
fnfe.printStackTrace();
}
catch (java.io.IOException ioe)
{
ioe.printStackTrace();
}

}
}

Chapter 7. Integrating business logic 59

Using custom screen recognition
You can use business logic to perform custom screen recognition. HATS Toolkit
provides many options for recognizing screens within a screen customization,
including the number of fields on a screen, the presence or absence of strings, and
the use of global variables. These options are described in HATS User's and
Administrator's Guide. You might find, however, that you want to recognize a screen
in a way that you cannot configure using the options in the screen customization
editor. In that case, you can add your own custom screen recognition logic.

Note: The information in this section can be used for screen recognition within
macros as well as within screen customizations.

If you want to create custom screen recognition logic using HATS global variables,
see “Custom screen recognition using global variables” on page 62.

If you have already created custom screen recognition logic by extending the
ECLCustomRecoListener class, you can use this logic within HATS. If you are
creating new custom logic, follow these steps:
1. Open the Java perspective.
2. Click File > New > Class.
3. Browse to the Source directory of your HATS project.
4. Enter the names of your package and class.
5. For the superclass, click Browse and locate

com.ibm.hats.common.customlogic.AbstractCustomScreenRecoListener.
6. Select the check box for Inherited abstract methods. Click Finish. This

imports the code skeleton into the project you specified.
7. Add your logic to the isRecognized method. Make sure that it returns a

boolean value.
public boolean isRecognized(String arg0, IBusinessLogicInformation
arg1, ECLPS arg2, ECLScreenDesc arg3)

Refer to the HATS API documentation at the HATS Knowledge Center for a
description of this method.

8. After creating your method, you must update the screen recognition to invoke
your method. From the HATS Projects view, expand your project and the
Screen Customizations folder. Double-click the name of the screen
customization to which you want to add your custom logic. Click the Source
tab to open the Source view of the screen customization.

9. Within the Source view, you will see a block that begins and ends with the
<description> and </description> tags. This block contains the information
that is used to recognize screens. Add a line within this block to invoke your
custom logic:
<customreco id="customer.class.package.MyReco::settings"
invertmatch="false" optional="false"/>

where customer.class.package.MyReco is your package and class name. If you
want to pass any settings into your class, add them after the class name,
separated by two colons. Settings are optional, and your class must parse
whatever values are passed in. If you do not need settings, omit the two
colons.
Consider where within the description block you want to place the
<customreco> tag. If you want your custom logic invoked only if all the other
criteria match, place the <customreco> tag at the end of the block,

60 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

ugscreco.htm
ugscreco.htm
http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0

immediately before the </description> tag. If your screen customization
compares a screen region to a value, the description block will contain a
smaller block, beginning and ending with the <block> and </block> tags, to
define the value to which the screen region is compared. Be sure not to place
your customreco tag inside this block.
Following is an example section of a description block. Note the <customreco>
tag just before the </description> tag, and not between the <block and
</block> tags.
<description>
<oia invertmatch="false" optional="false" status="NOTINHIBITED"/>
<numfields invertmatch="false" number="61" optional="false"/>
<numinputfields invertmatch="false" number="16" optional="false"/>
<block casesense="false" col="2" ecol="14" erow="21"

invertmatch="false" optional="false" row="20">
<string value="USERID ==="/>
<string value="PASSWORD ==="/>
</block>
<cursor col="16" invertmatch="false" optional="false" row="20"/>
<customreco id="customer.class.package.MyReco::settings"

invertmatch="false" optional="false"/>
</description>

10. To rebuild your HATS project, click Project > Clean on the toolbar.
11. For RCP, run the application in your local test environment to test your

project. Refer to HATS Getting Started for more information.

Example of custom screen recognition
Following is an example of business logic that performs custom screen recognition.
This business logic class takes a list of code page numbers, separated by blanks, as
its settings, and recognizes the screen if its code page matches one of those listed
in the settings. The tag syntax is:
<customreco id="company.project.customlogic.CodePageValidate::[settings]"
optional="false" invertmatch="false" />

For example, you can insert the following tag into a description block:
<customreco id="company.project.customlogic.CodePageValidate::037 434 1138"
optional="false" invertmatch="false" />

In this case the screen will be recognized if its code page is 037, 434, or 1138.
//
// This sample is provided AS IS.
// Permission to use, copy and modify this software for any purpose and
// without fee is hereby granted. provided that the name of IBM not be used in
// advertising or publicity pertaining to distribution of the software without
// specific written permission.
//
// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SAMPLE, INCLUDING ALL
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL IBM
// BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
// DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
// IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
// OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SAMPLE.
//
package company.project.customlogic;

import java.util.StringTokenizer;
import java.lang.Integer;
import com.ibm.eNetwork.ECL.ECLPS;
import com.ibm.eNetwork.ECL.ECLScreenDesc;
import com.ibm.hats.common.IBusinessLogicInformation;
import com.ibm.hats.common.HostScreen;
import com.ibm.hats.common.customlogic.AbstractCustomScreenRecoListener;

public class CodePageValidate extends AbstractCustomScreenRecoListener {

Chapter 7. Integrating business logic 61

gsassmbl.htm#xfer

/**
* @see com.ibm.hats.common.customlogic.AbstractCustomScreenRecoListener
* #isRecognized(java.lang.String, com.ibm.hats.common.IBusinessLogicInformation,
* com.ibm.eNetwork.ECL.ECLPS, com.ibm.eNetwork.ECL.ECLScreenDesc)
*/
public boolean isRecognized(
String settings,
IBusinessLogicInformation bli,
ECLPS ps,
ECLScreenDesc screenDescription) {
HostScreen hs=bli.getHostScreen();
int int_codepage=hs.GetCodePage();
if(settings!=null)
{
StringTokenizer tokenizer = new StringTokenizer(settings);
while(tokenizer.hasMoreTokens())
{
int int_token= Integer.valueOf(tokenizer.nextToken()).intValue();
if (int_token==int_codepage)
{
return true;

}
}
}
return false;
}

}

Custom screen recognition using global variables
HATS Toolkit provides some screen recognition options using global variables,
including these functions:
v Verify that a global variable exists
v Verify that a global variable does not exist
v Verify the integer or string value of a global variable

Refer to HATS User's and Administrator's Guide for information about these options.
If you want to perform screen recognition that is based on HATS global variables
and the options in the Global Variable Logic panel do not meet your requirements,
you can add your own logic based on the values or existence of one or more
global variables. This approach does not require you to create a Java class; instead,
it uses the GlobalVariableScreenReco class, which is provided by HATS, and you
can specify comparisons to be made as settings on the <customreco> tag. The
format is one of the following:
v <customreco

id="com.ibm.hats.common.customlogic.GlobalVariableScreenReco::
{variable(name,option,resource, index)}COMPARE{type(name,option,resource,

index)}"
invertmatch="false" optional="false"/>

v <customreco
id="com.ibm.hats.common.customlogic.GlobalVariableScreenReco::
{variable(name,option,resource, index)}COMPARE{type(value)}"
invertmatch="false" optional="false"/>

Braces {} are used to contain each of the two items that are being compared. The
first item is a HATS global variable, whose name is specified in name. You can use
option to specify that you want to use the variable's value, length, or existence in
your comparison. The resource and index settings are optional. Use resource to
indicate whether the global variable is local (which is the default) or shared. Use
index to indicate which value to use from an indexed global variable.

The second item can be one of the following:

62 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

ugscreco.htm

v Another HATS global variable, with similar options, in which case the first
format is used

v A fixed value, in which case the second format is used

The valid values for the settings are shown in Table 17. For the COMPARE setting,
the only valid values for comparing strings are EQUAL and NOTEQUAL.

Table 17. Valid values for settings

Setting Valid values

type v variable

v integer

v boolean

v string

COMPARE v EQUAL

v NOTEQUAL

v GREATERTHAN

v GREATERTHANOREQUAL

v LESS THAN

v LESSTHANOREQUAL

options v exists (boolean)

v value (string/integer/boolean)

v length (integer)

v object (object)

resource v local

v shared

index Any positive integer or 0

The following example compares the values of two local global variables:
<customreco id="com.ibm.hats.common.customlogic.GlobalVariableScreenReco::

{variable(name=gv1,option=value,resource=local)}EQUAL
{variable(name=gv2,option=value,resource=local)}"
invertmatch="false" optional="false"/>

This expression evaluates to true if the values of gv1 and gv2 are the same.

Now consider the length option. For a non-indexed global variable, length is the
length of the value of the variable. For an indexed global variable, if you specify
an index, length is the length of that index of the global variable; if you do not
specify an index, length is the number of indexed entries in the global variable.
<customreco id="com.ibm.hats.common.customlogic.GlobalVariableScreenReco::

{variable(name=gv1,option=length,resource=shared)}LESSTHANOREQUAL
{variable(name=gv2,option=length,index=4)}" invertmatch="false" optional="false"/>

This expression compares the length of gv1 to the length of the fourth index of gv2.
It evaluates to true if the length of gv1 is less than or equal to the length of the
fourth index of gv2. You can use LESSTHANOREQUAL because length returns an
integer value.

The use of resource=shared on gv1 in this example indicates that gv1 is a shared
global variable. The other option is resource=local, which is the default, and means
that the global variable is not shared with other applications.

Chapter 7. Integrating business logic 63

You do not have to compare one global variable with another. You can compare
the length of a global variable with a fixed integer. You can compare the value of a
global variable with another string. For example:
<customreco id="com.ibm.hats.common.customlogic.GlobalVariableScreenReco::

{variable(name=gv1,option=value)}EQUAL{string(value=mystring)}"
invertmatch="false" optional="false"/>

This expression compares the value of gv1 with the string that is contained in
mystring. The string can be a fixed string, the value of a variable, or a value that is
returned from a method call. In general, you do not need to use custom logic to
compare the length or value of a global variable to a fixed value; you can add
these comparisons using the Global Variable Logic panel.

64 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Chapter 8. Creating custom components and widgets

HATS provides a set of host components that recognize elements of the host screen
and widgets that render the recognized elements. The components and widgets
have settings that you can modify if the default settings do not recognize
components or render widgets as you want them. If the components, widgets, and
the settings that are provided by HATS do not meet your needs, you can create
your own custom components or widgets or modify existing host components or
widgets. You might want to create your own host component in order to recognize
elements of your host screen that the HATS components do not recognize. You
might want to create your own widget in order to change the way elements are
presented on the page. The following sections describe how to create custom host
components and widgets. For further information, see Appendix A, “HATS Toolkit
files,” on page 81.

Note: If you are using a bidirectional code page, you can control the direction of
widgets and other presentation aspects. See Chapter 9, “Using the HATS
bidirectional API,” on page 75.

Components and widgets properties for RCP applications
In RCP projects, transformations are SWT (Standard Widget Toolkit) composites.
RCP transformations have a .java file extension. Transformations can be found in
the HATS Projects view under Rich Client Content > Transformations.
Transformations are made up of ComponentRendering composites (a specialized
composite or panel that transforms a given region using the specified component,
widget, and settings). The following code example illustrates the concept:
ComponentRendering rendering1 = new ComponentRendering(this, 0);

rendering1.setComponent("<fully qualified component class name>");
rendering1.setWidget("<fully qualified widget class name>");
rendering1.setRegion(new BlockScreenRegion(start_row, start_col, end_row, end_col));
rendering1.setComponentSettings(new StringableProperties("<component settings>"));
rendering1.setWidgetSettings(new StringableProperties("<widget settings>"));
rendering1.setHostScreen(getHostScreen());
rendering1.setTransformInfo(getTransformInfo());
rendering1.setAutoRender(false);
rendering1.setTextReplacement("<text replacement string>");
rendering1.render();

In the above example, component settings means a string of component settings and
widget settings means a string of widget settings.

These composites are usually constructed and rendered within the render()
method of the transformation.

SWT widgets must implement the
com.ibm.hats.rcp.transform.renderers.SwtRenderer interface for RCP projects, and
SWT widgets have a drawSwt method.

The following SWT widget code sample shows the constructor and drawSwt
method:
public MyCustomWidget extends Widget implements SwtRenderer {

public MyCustomWidget (ComponentElement[] componentElements, Properties settings) {
super(componentElements, settings);

}

© Copyright IBM Corp. 2007, 2015 65

public Control[] drawSwt(Composite parent) {
SwtElementFactory elementFactory = SwtElementFactory.newInstance(getContextAttributes(),
getSettings(), parent.getDisplay());

// Add code here to generate SWT Control objects here

return controls; // returns controls added to the specified parent
}

}

Creating a custom host component
HATS provides a Create Component wizard to help you create custom
components. You can start the wizard in several ways:
v From the File > New > HATS Component menu in HATS Toolkit
v From the HATS > New > Component menu in HATS Toolkit
v From the context (right-click) menu of a HATS project, select New HATS >

Component

There are two panels of the Create Component wizard. On the first panel, you
provide the name of the project, the name of the new component, and the name of
the Java package for the component. Optionally, you can select a check box to
include stub methods that allow you to define a GUI panel for configuring the
settings used by the new component (see “HATS Toolkit support for custom
component and widget settings” on page 72 for more information). On the second
panel, you enter the name you want displayed for the new component in the
HATS Toolkit and select the widgets to associate with the component. Widget
association is not necessary to complete the wizard. You can define the association
of components and widgets later. Refer to “Registering your component or widget”
on page 70 for more information about associating components and widgets.

The following sections explain the required elements of a custom component that
the wizard provides:
v Extends the host component abstract class,

com.ibm.hats.transform.components.Component.
If one of the HATS host components is very similar to what you need, it will be
easier to extend that component. See “Extending component classes” on page 68
for more information.

v Adds the constructor method. This method, named for your component, must
accept a com.ibm.hats.common.HostScreen object. For example:
public MyComponent(HostScreen hostScreen) {

super(hostScreen);
}

The constructor should initialize parameters that the recognize() method will
require, based on the host screen object.

v Adds the recognize() method.
public ComponentElement[] recognize(BlockScreenRegion region,

Properties settings)

The recognize() method has a different implementation in each host component
class. It accepts the region and settings passed to it and returns an array of
component element objects. You should implement this method to implement
your own pattern recognition logic.
The recognize() method must return an array of ComponentElement objects, as
defined in com.ibm.hats.transform.elements.ComponentElement. Each HATS

66 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

component returns a slightly different set of elements that extend
ComponentElement. For example, the SelectionListComponent returns an array
of SelectionComponentElement objects. This array of component elements is
passed to the specified widget, so be sure to return an array of elements that can
be accepted by the widget you want to use.
For a description of the arguments of this method, refer to the HATS API
References (Javadoc) for the recognize() method of the Component class. See
“Using the API documentation (Javadoc)” on page 2.

v Adds the source code for the component into the Source folder of your project
v Compiles the new component .java file, if you have Build Automatically

checked in the Rational SDP workbench preferences (Window > Preferences >
General > Workspace or Project > Build Automatically). If the component is
not compiled into a .class file, it is not available for use in the HATS Toolkit.

v Registers the new component in the ComponentWidget.xml file. See “Registering
your component or widget” on page 70 for more information about registering
components.

If you selected the check box to include HATS Toolkit graphical user interface
support methods, enabling you to modify the settings of the component, the Create
Component wizard adds the following methods:
v Method to return the number of pages in the property settings:

public int getPropertyPageCount() {
return (1);

}

v Method to return the settings that can be customized:
public Vector getCustomProperties(int iPageNumber, Properties properties,

ResourceBundle bundle) {
return (null);

}

v Method to return the default values of the settings that can be customized:
public Properties getDefaultValues(int iPageNumber) {

return (super.getDefaultValues(iPageNumber));
}

See “HATS Toolkit support for custom component and widget settings” on page 72
for more information about the methods necessary to support your custom
component.

Note: If you want your component to work properly within Default Rendering,
you must set the consumed region (that is, the area of the host screen that
has been processed) on each component element that your component
returns, before returning the component element. This tells the Default
Rendering that this region of the screen has been consumed, or processed,
by a host component and should not be processed again. To set the
consumed region, use this method:
public void setConsumedRegion(BlockScreenRegion region)

Refer to the HATS API References (Javadoc) for the ComponentElement
class for more information. See “Using the API documentation (Javadoc)” on
page 2.

Chapter 8. Creating custom components and widgets 67

Extending component classes
HATS provides a number of host component classes. You can extend any of the
host component classes that are found in the ComponentWidget.xml file by replacing
the statement public class MyCustomComponent extends Component in the created
.java file for the new component with the class name of an existing component. For
example:
public class MyCustomComponent

extends com.ibm.hats.transform.components.CommandLineComponent

Note: Bidirectional components are stored in the
com.ibm.hats.transform.components.BIDI package. The names of
bidirectional classes for components are the same as regular components,
but they are followed by “BIDI”; for example,
com.ibm.hats.transform.components.BIDI.CommandLineComponentBIDI.

Each HATS component performs recognition of elements of the host screen in the
recognize() method. To extend a host component and accomplish the specific
recognition task you need, you can use either of these approaches:
v Extend one of the component classes that is provided by HATS and override the

recognize() method of the component. Somewhere in your recognize() method
you should add a call like super.recognize(region, settings); to invoke the
recognize() method of the class you extended. You can modify the process by
changing the settings before calling the superclass, or by manipulating the
output returned by the superclass.

v Extend one of the component classes that is provided by HATS and override the
recognize() method of the component. Instead of using the recognize() method
of the superclass, invoke the recognize() method of one of the other component
classes. This approach will be useful if you want to recognize a complex host
component that combines aspects of more than one of the HATS components.

The Create Component wizard generates a recognize() method that returns null,
which indicates that the host screen region is not recognized by the new
component. To change the custom component to act as the HATS component it is
extended from, whose elements contain all of the correct ComponentElements,
remove the "return null" from the .java file and change the code in the component
code. For example:
public ComponentElement[] recognize(LinearScreenRegion region, Properties settings) {
ComponentElement [] elements = super.recognize(region, settings);
return elements;
}

To edit the ComponentWidget.xml file, click the Navigator tab of the HATS Toolkit.
The ComponentWidget.xml file is shown at the bottom of the Navigator view of
your project. See “Registering your component or widget” on page 70 for more
information about the ComponentWidget.xml file.

Creating a custom widget
HATS provides a Create Widget wizard to help you create custom widgets. You
can start the wizard in several ways:
v From the File > New > HATS Widget menu in HATS Toolkit
v From the HATS > New > Widget menu in HATS Toolkit
v From the context (right click) menu of a HATS project, select New HATS >

Widget

68 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

There are two panels in the Create Widget wizard. On the first panel, you provide
the name of the project, the name of the new widget, and the name of the Java
package for the widget. Optionally, you can select a check box to include stub
methods that allow you to define a GUI panel for configuring the settings used by
the new widget (see “HATS Toolkit support for custom component and widget
settings” on page 72 for more information). On the second panel, enter the name
you want displayed for the new widget in the HATS Toolkit and select the
components to associate with the widget.

The wizard provides the following required elements of a custom widget:
v Extends the widget abstract class and implements the SwtRenderer interface:

public class MyCustomWidget extends Widget implements SwtRenderer.
See “Extending widget classes” on page 70 for more information.

v Adds the constructor method:
public MyCustomWidget(ComponentElement[] arg0, Properties arg1) {

super(arg0, arg1);
}

v Adds the following method to generate SWT for RCP project output.

public Control[] drawSwt(Composite parent) {
SwtElementFactory elementFactory =

SwtElementFactory.newInstance(contextAttributes,
settings, parent.getDisplay());

// Construct controls using SwtElementFactory instance

return new Control[0];
}

The SwtElementFactory should be used to construct SWT controls since it
handles associating new controls with the underlying data model and applying
the styles of the associated template.

v Adds the source code for the widget into the Source folder of your project
v Compiles the new widget .java file, if you have Build Automatically selected in

the Rational SDP workbench preferences (Window > Preferences > General >
Workspace) or the Project menu. If the widget is not compiled into a .class file,
it is not available for use in the HATS Toolkit.

v Registers the new widget in the ComponentWidget.xml file. See “Registering your
component or widget” on page 70 for more information about registering
widgets.

If you selected the check box to include HATS Toolkit graphical user interface
support methods, enabling you to modify the settings of the widget, the Create
Widget wizard adds the following methods:
v Method to return the number of pages in the property settings:

public int getPropertyPageCount() {
return (1);

}

v Method to return the settings that can be customized:
public Vector getCustomProperties(int iPageNumber, Properties properties,

ResourceBundle bundle) {
return (null);

}

v Method to return the default values of the settings that can be customized:

Chapter 8. Creating custom components and widgets 69

public Properties getDefaultValues(int iPageNumber) {
return (super.getDefaultValues(iPageNumber));
}

See “HATS Toolkit support for custom component and widget settings” on page 72
for more information about the methods necessary to support your custom widget.

Extending widget classes
HATS provides a number of widget classes. You can extend any of the widget
classes found in the ComponentWidget.xml file by replacing the
public class MyCustomWidget extends Widget implements SwtRenderer

in the created .java file for the new widget with the class name of an existing
widget, such as
public class MyCustomWidget extends

com.ibm.hats.rcp.transform.widgets.SwtFieldWidget

Note: Bidirectional widgets are stored in the com.ibm.hats.transform.widgets.BIDI
package. The names of bidirectional classes for widgets are the same as
regular widgets, but they are followed by “BIDI”; for example,
public class newBIDIField extends
com.ibm.hats.rcp.transform.widgets.BIDI.SwtFieldWidgetBIDI implements SwtRenderer

If you want to modify an existing widget, you must extend one of the existing
widget classes and override its drawSwt method. Refer to the HATS API References
(Javadoc) for details about widget interfaces and methods. See “Using the API
documentation (Javadoc)” on page 2.

Widgets and global rules
Widgets that present input fields should check whether the input field has already
been processed by a HATS global rule. When a host screen is received, HATS
searches it for host components that match global rules that are defined for that
HATS application. When your widget checks whether the input field has already
been processed by a HATS global rule, the call returns null if the input field has
not been processed. If the input field has already been processed according to a
global rule, the call returns the transformation fragment to which the input field
has been transformed by the global rule. Your widget should output the fragment
rather than processing the component element.
Control control = RcpRenderingRulesEngine.processMatchingElement(parent, fce,

contextAttributes);
if (control == null) {

...
}

Add the above example to the drawSwt() method for the widget.

Registering your component or widget
Registering your custom components and widgets in the ComponentWidget.xml file
makes them available for use in the HATS Toolkit, such as in the Insert Host
Component wizard.

Host components must map to specific widgets. Custom host components can map
to any existing widget or to a custom widget. The Create a custom component or
widget wizards register your custom components and widgets in the
ComponentWidget.xml file, and associates components and widgets. When using the

70 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

wizards, if you did not associate your custom component or widget, you need to
edit the ComponentWidget.xml file and add the associations. To edit the
ComponentWidget.xml file, click the Navigator tab of the HATS Toolkit. The
ComponentWidget.xml file is shown at the bottom of the Navigator view of your
project.

Note: If you decide to delete a custom component or widget after it has been
registered, simply deleting the source code for the component or widget
from the Source folder of your project is not enough to completely remove
it. It is still referenced in the registry and there is no programmatic way to
remove it. You should remove it from the registry by editing the
ComponentWidget.xml file and deleting the references to the component or
widget.

Following is an example of the ComponentWidget.xml file that shows the
HATS-supplied Field Table component and one of the associated widgets, the
vertical bar graph widget.
<ComponentWidgetList>

<components>
<component className="com.ibm.hats.transform.components.FieldTableComponent"

displayName="Field table" image="table.gif">
<associatedWidgets>

<widget className="com.ibm.hats.rcp.transform.widgets.SwtVerticalBarGraphWidget"/>
</associatedWidgets>

</component>
</components>

<widgets>
<widget className="com.ibm.hats.rcp.transform.widgets.SwtVerticalBarGraphWidget"

displayName="Vertical graph" image="verticalBarGraph.gif" />
</widgets>

</ComponentWidgetList>

As you can see, there are two sections to this file: components and widgets.

The components section contains the list of all registered components. To register a
custom component and make it available to the HATS Toolkit, add a <component>
tag and the associated <widget> tags to the ComponentWidget.xml file. You must
supply a className, displayName, and the associated widgets.

className
Identifies the Java class that contains the code to recognize elements of the
host screen. The class name is usually in the form
com.myCompany.myOrg.ClassName.

displayName
Identifies the name by which your custom component is known and how
it appears in the list of components in the HATS Toolkit. This name must
be unique among the registered components. The form of the displayName
for a custom component is simply a string. Spaces are allowed in the
displayName.

image The image attribute identifies the image to use for your component when
it appears in the HATS Toolkit.

widget
Identifies the widgets that are associated with this component. There must
be a separate <widget> tag for each associated widget. All of the <widget>
tags for the component must be defined within the <associatedWidgets>
tag and its </associatedWidgets> ending tag. The <widget> tag within the

Chapter 8. Creating custom components and widgets 71

<associatedWidgets> tag contains only the className attribute, which
identifies the Java class that contains the code to link the widget to the
component. The class name is usually in the form
com.myCompany.myOrg.ClassName.

The widgets section contains the list of all registered widgets. To register a widget,
link it to a component, make it available for use in the HATS Toolkit, and add a
<widget> tag to the ComponentWidget.xml file. You must supply a className and a
displayName.

className
Identifies the Java class that contains the code to render the widget. The
class name is usually in the form com.myCompany.myOrg.ClassName.

displayName
Identifies the name by which your custom widget is known and how it
appears in the list of widgets in the HATS Toolkit. This name must be
unique among the registered widgets. The form of the displayName for a
custom widget is simply a string. Spaces are not allowed in the
displayName. However, you can use an underscore (_) in place of a
space.

HATS Toolkit support for custom component and widget settings
You can provide GUI support for modifying the settings of your custom
component and widget. This is useful if other developers will be using your
custom component or widget or you want to easily test different combinations of
settings using the preview features available in the HATS Toolkit. The base
component and widget classes implement the ICustomPropertySupplier interface.
This interface allows a component or widget to contribute setting information to
the HATS Toolkit. This information is used to render a panel by which the settings
of the component or widget can be modified. Not all settings need to be exposed
in the GUI.

The getCustomProperties() method returns a vector of HCustomProperty
customizable property objects. Each HCustomProperty object represents a setting
of the component or widget. The HATS Toolkit renders each HCustomProperty
objects based on its type. For example, an object of type
HCustomProperty.TYPE_BOOLEAN is rendered as a GUI checkbox.

The following sample code demonstrates how a widget can provide GUI support
for three of its settings (mySetting1, mySetting2, and mySetting3):
// Returns the number of settings panels (property pages) to be contributed
//by this widget. The returned value must be greater than or equal to 1 if
//custom properties will be supplied via the getCustomProperties() method.
public int getPropertyPageCount() {

return 1;
}

// Returns a Vector (list) of custom properties to be displayed in the GUI
//panel for this component or widget.
public Vector getCustomProperties(int iPageNumber, Properties properties,

ResourceBundle bundle) {
Vector props = new Vector();

// Constructs a boolean property that will be rendered as a checkbox
HCustomProperty prop1 = HCustomProperty.new_Boolean("mySetting1",

"Enable some boolean setting", false, null, null);
props.add(prop1);

72 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

// Constructs a string property that will be rendered as a text field
HCustomProperty prop2 = HCustomProperty.new_String("mySetting2",

"Some string value setting", false, null,
null, null, null);

props.add(prop2);

// Constructs an enumeration property that will be rendered as a drop-down
HCustomProperty prop3 = HCustomProperty.new_Enumeration("mySetting3",

"Some enumerated value setting", false,
new String[] { "A", "B", "C" }, new String[]
{ "Option A", "Option B", "Option C" }, null, null, null);

props.add(prop3);

return props; }

Enable some boolean setting

Some string value setting

Some enumerated value setting A

The values supplied by the user of the custom component or widget will be
available in the componentSettings Properties object passed into the recognize()
method of the component or the widgetSettingsProperties object passed into the
constructor of the widget. The getCustomProperties() method may be called
during runtime to collect default values for settings.

For a description of the arguments and usage of these methods, refer to the HATS
API References (Javadoc) for the HCustomProperty class. See “Using the API
documentation (Javadoc)” on page 2.

Chapter 8. Creating custom components and widgets 73

74 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Chapter 9. Using the HATS bidirectional API

Note: There is no bidirectional support for global variable overrides and Light pen
(attention) and Light pen (selection) host components.

If you create HATS applications that use bidirectional (Arabic or Hebrew) code
pages, and you add business logic or create your own custom components or
widgets, you can use the bidirectional API to handle the recognition of host
components and the presentation of widgets in the rich client transformation. This
chapter describes this API. Before using the material in this chapter you should be
familiar with the bidirectional concepts described in HATS User's and
Administrator's Guide.

Note: You can find documentation on the VisualText component in the Rational
SDP Help under the topic SWT Bidi Extensions.

Data Conversion APIs
Two APIs for handling text conversion from visual to logical and vice versa are
included in the HostScreen class. You can use these APIs when creating custom
widgets and components to handle the extraction of data.

ConvertVisualToLogical
public java.lang.String ConvertVisualToLogical(java.lang.String
inputBuffer, boolean isleft-to-rightVisual,
boolean isleft-to-rightImplicit)

Converts the given string from visual to implicit format and returns the implicit
format of the string.

inputBuffer
The input string in visual format.

isleft-to-rightVisual
If true, inputBuffer is in visual left-to-right form.

isleft-to-rightImplicit
If true, the output buffer is in implicit left-to-right form.

ConvertLogicalToVisual
public java.lang.String ConvertLogicalToVisual(java.lang.String
inputBuffer, boolean isleft-to-rightImplicit,
boolean isleft-to-rightVisual)

Converts the given string from implicit to visual format and returns the visual
format of the string.

inputBuffer
The input string in implicit format.

isleft-to-rightImplicit
If true, inputBuffer is in implicit left-to-right form.

isleft-to-rightVisual
If true, the output buffer is in visual left-to-right form.

© Copyright IBM Corp. 2007, 2015 75

ugbidi.htm
ugbidi.htm

Global Variable APIs
There are two getter methods that you can use to get the value of global variables.
Using these methods you can get the global variable value either in implicit format
or in visual format. These two methods are in class
com.ibm.hats.common.BaseInfo.

getGlobalVariable
public IGlobalVariable getGlobalVariable(String name, boolean
createIfNotExist,boolean bidiImplicit)

Gets the named global variable, optionally creating it if it does not already exist.

createIfNotExist
Indicates whether or not to create a nonexistent global variable.

bidiImplicit
Indicates whether to get the global variable value in implicit format if true,
or in visual format if false.

getSharedGlobalVariable
public IGlobalVariable getSharedGlobalVariable(String name, boolean
createIfNotExist,boolean bidiImplicit)

Gets the named shared global variable, optionally creating it if it does not already
exist.

createIfNotExist
Indicates whether or not to create a nonexistent global variable

bidiImplicit
Indicates whether to get the global variable value in implicit format if true,
or in visual format if false.

BIDI OrderBean
You can use the methods of the BIDI OrderBean for the correct display of
bidirectional data. It contains the following parameters:

BidiString
String. Contains bidirectional text

FromTextVisual
Boolean. Indicates whether the source bidirectional text is visual. Default is
true.

FromOriLTR
Boolean. Indicates whether the orientation of the source bidirectional text is
LTR. Default is true.

ToTextVisual
Boolean. Indicates whether the target bidirectional text is visual. Default is
true.

ToOriLTR
Boolean. Indicates whether the orientation of the target bidirectional text is
LTR. Default is true.

76 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

NeedShape
Boolean. Indicates whether bidirectional text is Arabic text and whether it
needs shaping. Default is false.

CharSet
String. Defines the character encoding for the JSP.

NumShape
String. Defines the numerals shaping method. Default is Nominal.

SymSwap
Boolean. Indicates whether symmetric swapping is on. Default is false.

BIDI OrderBean methods
setBidiString

public void setBidiString (String BdString)

Sets the bidirectional text to be reordered to the given string. The only
parameter is BdString, which is the bidirectional string that needs
reordering.

getBidiString
public String getBidiString ()

Gets the bidirectional text. Returns the bidirectional string that needs
reordering.

setFromTextVisual
public void setFromTextVisual (boolean on)

Sets the source bidirectional text type as visual. The only parameter is on.
If true, defines this source bidirectional text as visual. If false, defines this
source bidirectional text as implicit.

setFromOriLTR
public void setfromOriLTR (boolean on)

Sets the source bidirectional text orientation as LTR. The only parameter is
on. If true, defines this source bidirectional text as LTR. If false, defines
this source bidirectional text as RTL.

setToTextVisual
public void setToTextVisual (boolean on)

Sets the target bidirectional text type as visual. The only parameter is on. If
true, defines this target bidirectional text as visual. If false, defines this
target bidirectional text as implicit.

setToOriLTR
public void setToOriLTR (boolean on)

Sets the target bidirectional text orientation as LTR. The only parameter is
on. If true, defines this target bidirectional text as LTR. If false, defines
this target bidirectional text as RTL.

setEncoding
public void setEncoding (String CharSet)

Sets the encoding character set. The only parameter is CharSet, which is a
character-encoding name.

setNeedShape
public void setNeedShape (boolean on)

Chapter 9. Using the HATS bidirectional API 77

Sets the need to perform shaping. The only parameter is on. If true,
indicates the need to perform shaping on the bidirectional text.

Order public void Order ()

Performs the ordering of the bidirectional text. There are no parameters.

CompressLamAlef
public String CompressLamAlef(String input,boolean direction)

Returns a string in which a Lam character followed by an Alef character is
replaced by one LamAlef character. Parameters are:
v Direction. If true, indicates input text is in visual form. If false, input

text is in implicit form.
v Input. An input string containing LamAlef characters to be compressed.

ExpandLamAlef
public String ExpandLamAlef(String input,boolean direction)

Returns a string in which a Lam Alef character is replaced by a Lam
followed by one Alef character. Parameters are:
v Direction. If true, indicates input text is in visual form. If false, input

text is in implicit form.
v Input. An input string containing LamAlef characters to be expanded.

setNumerals
public void setNumerals(String NumShape)

Sets the numerals shape of the output buffer. The only parameter is:
v NumShape. A string that takes one of three values:

– NOMINAL. Numerals are in Latin format.
– CONTEXTUAL. Numerals follow numbers.
– NATIONAL. Numerals are in National format.

v Input. An input string containing LamAlef characters to be expanded.

setSymSwap
public void setSymSwap (boolean on)

Sets the Symmetric swapping option with Visual RTL orientation. The only
parameter is on. If true, symmetric swapping is enabled for swapping
characters in RTL screens. If false (the default), symmetric swapping is
disabled for swapping characters in RTL screens.

ShapeArabicData
public String ShapeArabicData(String strInBuffer,boolean
isLTRVisual, boolean EnableNumSwap)

Returns a string in which Arabic data is shaped. Parameters are:
v strInBuffer. The bidirectional string that needs shaping.
v isLTRVisual. An input string containing LamAlef characters to be

expanded. If true, bidirectional string is left to right visual. If false,
bidirectional string is right to left visual.

v EnableNumSwap. If true, enable Numeric swapping. If false, disable
numeric swapping.

DeshapeArabicData
public String DeshapeArabicData (String strInBuffer,boolean
isLTRVisual,boolean EnableNumSwap)

Returns a string in which Arabic data is deshaped. Parameters are:

78 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

v strInBuffer. The bidirectional string that needs deshaping.
v isLTRVisual. If true, bidirectional string is left to right visual. If false,

bidirectional string is right to left visual.
v EnableNumSwap. If true, enable numeric swapping. If false, disable

numeric swapping.

ConvertLogicalToVisual
public java.lang.String ConvertLogicalToVisual(java.lang.String
inputBuffer, boolean isLTRimplicit,
boolean isLTRVisual)

Converts the given string from implicit to visual format and returns the
visual format of the string. Parameters are:
v InputBuffer. The input string in implicit format.
v isLTRimplicit. If true, inputBuffer is in implicit left-to-right form.
v isLTRVisual. If true, the output buffer is in visual left-to-right form.

ConvertVisualToLogical
public java.lang.String ConvertVisualToLogical(java.lang.String
inputBuffer, boolean isLTRVisual,
boolean isLTRimplicit)

Converts the given string from visual to implicit format and returns the
implicit format of the string. Parameters are:
v InputBuffer. The input string in visual format.
v isLTRimplicit. If true, the output buffer is in implicit left-to-right form.
v isLTRVisual. If true, inputBuffer is in visual left-to-right form.

Chapter 9. Using the HATS bidirectional API 79

80 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Appendix A. HATS Toolkit files

When you use HATS Toolkit to build your project, files for each component of the
project are created. This appendix tells you where the file is located on your
system, how to view and edit the source for the file, and describes the tags that
make up each file.

Note: Use the HATS Toolkit editors if you edit these source files.

All of the files you create with HATS Toolkit are stored on your system in one or
more workspaces managed by your Rational SDP program, such as Rational
Application Developer. You can choose your workspace directory, and you can
have more than one. Refer to the information provided with Rational SDP for
information about choosing your workspace.

All of the file locations in this appendix refer to the relative path from the
directory named for your project, which will be created within your workspace.

Application file (.hap)
The application file contains XML tags that define the settings you select when you
create the project.

The application (.hap) file is stored in the project_name/profiles directory, where
project_name is the name you gave the project when you created it. The application
(.hap) file for a HATS EJB project is stored in the project_name/ejbModule directory.
To view and edit the source of the application file for your HATS project, expand
your project in the HATS Projects view and double-click Project Settings to open
the project editor. You can view the source by clicking on the Source tab.

You can modify the application file using any of the tabs in the project editor.
HATS Toolkit updates the affected information on other tabs when you make
changes on any tab.

<application> tag
The <application> tag is the enclosing tag for the project.

The attributes of the <application> tag are:

active This attribute is not used by HATS. It is contained here for compatibility
with HATS Limited Edition.

configured
This attribute is not used by HATS. It is contained here for compatibility
with HATS Limited Edition.

description
Specifies the description you enter when you create a project.

template
Specifies the name of the template you selected for the project when you
created the project. The default template is
predefined.rcp.templates.Modern.

© Copyright IBM Corp. 2007, 2015 81

<connections> tag
The <connections> tag is a container for all the connection tags that define
connections for this project.

The attributes of the <connections> tag are:

default
Specifies the name of the default connection. The default connection, which
is created using the connection values that you specify in the New HATS
Project wizard, defaults to the name of main.

<connection> tag
The <connection> tag identifies a connection defined for the project and points to
the connection (.hco) file that defines the connection.

The attributes of the <connection> tag are:

name Specifies the name you entered when you created the connection.

<eventPriority> tag
The <eventPriority> tag is the enclosing tag for the screen events you defined for
the project. The order of the event tags within the <eventPriority> tag is the order
in which screen events are checked when a new host screen is encountered. This
tag has no attributes.

<event> tag
The <event> tag specifies a screen event that you defined for the project.

The attributes of the <event> tag are:

enabled
Specifies whether the screen event's screen recognition criteria should be
checked when a new host screen is encountered. Valid values are true and
false. The default value is true.

name Specifies the name you gave the screen event when you defined it. If you
store a screen event file under a folder (or group), the name of the folder is
prepended to the name of the file.

type Specifies that this is a screen combination event. The available attribute is
screenCombination.

<classSettings> tag
The <classSettings> tag is the enclosing tag for the Java classes you include in the
project. This tag has no attributes.

<class> tag
The <class> tag specifies a class whose attributes are defined in the enclosed
<setting> tags.

The attributes of the <class> tag are:

name Specifies one of the following Java classes:
v com.ibm.hats.common.AppletSettings
v com.ibm.hats.common.ApplicationKeypadTag

82 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

v com.ibm.hats.common.ClientLocale
v com.ibm.hats.common.DBCSSettings
v com.ibm.hats.common.DefaultConnectionOverrides
v com.ibm.hats.common.DefaultGVOverrides
v com.ibm.hats.common.HostKeypadTag
v com.ibm.hats.common.KeyboardSupport
v com.ibm.hats.common.OIA
v com.ibm.hats.common.RuntimeSettings
v com.ibm.hats.rcp.transform.widgets.name

v com.ibm.hats.rcp.ui.views.ToolBarSettings
v com.ibm.hats.transform
v com.ibm.hats.transform.components.name

v com.ibm.hats.transform.DefaultRendering

<setting> tag
The <setting> tag specifies the settings associated with the class in which the
<setting> tag is enclosed. The <setting> tag contains name and value pairs for
each of the classes. The following sections described the name and value pairs for
each of the classes.

com.ibm.hats.common.AppletSettings
For the com.ibm.hats.common.AppletSettings class, name specifies a customizable
setting for the rich client application asynchronous update function:

enable
If true, enables the rich client application asynchronous update function.
The default is true.

com.ibm.hats.common.ApplicationKeypadTag
For the com.ibm.hats.common.ApplicationKeypadTag class, name specifies a
customizable setting:

show If true, shows a keypad in the application.

showDefault
If true, shows a key in the application keypad to change the presentation
to the default transformation.

showDisconnect
If true, shows a key in the application keypad to disconnect from the host.

showKeyboardToggle
If true, shows a key in the application keypad for toggling display of a
host keyboard.

showRefresh
If true, shows a key in the application keypad to refresh the browser
window contents using the original transformation, and restore the input
fields to their original value.

showReverse
If true, shows a key in the application keypad for bidirectional support.

Appendix A. HATS Toolkit files 83

com.ibm.hats.common.ClientLocale
For the com.ibm.hats.common.ClientLocale class, name is always locale. The value
for the locale setting specifies the language to be used to display button captions
and messages. Value can be one of the following. The default is accept-language.

Characters that identify the country code of the locale

ar Arabic

cs Czech

de German

en English

es Spanish

fr French

hu Hungarian

it Italian

ja Japanese

ko Korean

pl Polish

pt_BR Brazilian Portuguese

ru Russian

tr Turkish

zh Simplified Chinese

zh_TW
Traditional Chinese

accept-language
The language is acquired from the Accept-Language HTTP header of the
user's browser.

com.ibm.hats.common.DBCSSettings
For the com.ibm.hats.common.DBCSSettings class, there are three settings,
autoConvertSBCStoDBCS, setATOKDefaultModetoRoman, and
showUnprotectedSISOSpace.
v Valid values for the autoConvertSDBCtoDBCS attribute are:

true Automatically convert single byte characters to double byte characters
for 3270 and 3270E G-type or 5250 G-type and J-type fields.

false Do not automatically convert single byte characters to double byte
characters for 3270 and 3270E G-type or 5250 G-type and J-type fields.

The default is false. For more information, see the section Project settings editor
in the HATS User's and Administrator's Guide.

v Valid values for the setATOKDefaultModetoRoman attribute are:

true Set the ATOK default input mode as Roman.

false Set the ATOK default input mode as Hanji.

The default is false.
v Valid values for the showUnprotectedSISOSpace attribute are:

84 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

ugdbcs.htm#dbcs_prj

true Show any unprotected Shift In or Shift Out characters as a space.

false Do not use a space to show unprotected Shift In or Shift Out characters.

The default is true. For more information, see the section Project settings editor
in the HATS User's and Administrator's Guide.

com.ibm.hats.common.DefaultConnectionOverrides
For the com.ibm.hats.common.DefaultConnectionOverrides class, there is always at
least one <setting> tag with a name attribute of allowAll. This <setting> tag
indicates the chosen default security policy regarding the overriding of connection
parameters. Any exceptions to the chosen security policy for connection overrides
are recorded with additional <setting> tags, with the name attribute set to the
name of the exceptional connection parameter.

Valid values for the name attributes are:

true The end user can override the named connection parameter. If the named
connection parameter is allowAll, this means that all unnamed connection
parameters may be overridden with clients requests.

false The end user can not override the named connection parameter. If the
named connection parameter is allowAll, this means that no unnamed
connection parameters may be overridden

The default for the allowAll setting is false.

com.ibm.hats.common.DefaultGVOverrides
For the com.ibm.hats.common.DefaultGVOverrides class, there is always at least
one <setting> tag with a name attribute of allowAll. This <setting> tag indicates
the chosen default security policy regarding the overriding of global variables. Any
exceptions to the chosen security policy are recorded with additional <setting>
tags, with the name attribute set to hatsgv_variableName for regular global variable
exceptions, or hatssharedgv_variableName for shared global variable exceptions.

Valid values for the name attributes are:

true The end user can override the named connection parameter. If the named
connection parameter is allowAll, this means that all unnamed connection
parameters may be overridden with clients requests.

false The end user can not override the named connection parameter. If the
named connection parameter is allowAll, this means that no unnamed
connection parameters may be overridden

The default for the allowAll setting is false.

com.ibm.hats.common.HostKeypadTag
For the com.ibm.hats.common.HostKeypadTag class, name specifies a customizable
setting:

show If true, shows a host keypad in the application.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18

F19 F20 F21 F22 F23 F24 Attention

Page Up Page Down System Request Alternate View

Clear Enter PA1 PA2 PA3

Help Reset Field Exit Field Plus Field Minus

6 : 53

Appendix A. HATS Toolkit files 85

ugdbcs.htm#dbcs_prj

showAltView
If true, shows an AltView key in the host keypad.

showAttention
If true, shows an ATTN key in the host keypad.

showClear
If true, shows a CLEAR key in the host keypad.

showEnter
If true, shows an Enter key in the host keypad.

showF1 – showF24
If true, shows a Function key with the corresponding number in the host
keypad.

showFieldExit
If true, shows a Field Exit key in the host keypad.

showFieldMinus
If true, shows a Field Minus key in the host keypad.

showFieldPlus
If true, shows a Field Plus key in the host keypad.

showHelp
If true, shows a Help key in the host keypad.

showPA1
If true, shows a PA1 key in the host keypad.

showPA2
If true, shows a PA2 key in the host keypad.

showPA3
If true, shows a PA3 key in the host keypad.

showPageDown
If true, shows a Page Down key in the host keypad.

showPageUp
If true, shows a Page Up key in the host keypad.

showPrint
If true, shows a PRINT key in the host keypad for printing output.

showReset
If true, shows a RESET key in the host keypad.

showSystemRequest
If true, shows a SYSREQ key in the host keypad.

style Specifies how keys defined with value=true are displayed in the host
keypad. Valid values are buttons or links. The default is buttons.

com.ibm.hats.common.KeyboardSupport
For the com.ibm.hats.common.KeyboardSupport class, name specifies a
customizable setting:

enable
Specifies whether keyboard support is available in the project. When
keyboard support is enabled, end users can use the physical keyboard keys
to interact with the host. The end user can press certain physical keys that
have been mapped to host aid keys, such as the F1, SYSREQ, RESET, or

86 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

ATTN keys. The end user can toggle keyboard support to be disabled if he
wants to use a mapped physical keyboard key to interact with the browser.

Note: This must be set to true to turn on the wizard that allows the HATS
theme to change from the default emulator style to a modern
application style.

initialState
If true, the initial state of the host keyboard is on (the user can interact
with the application using the physical keyboard).

supportAllKeys
If true, all mapped keys are supported, regardless of what buttons or links
are displayed. If false:
v If there are no recognized host functions displayed in the current page

as buttons or links, support all mapped host functions.
v If there are any recognized host function buttons or links, support only

those host functions.

com.ibm.hats.common.OIA
For the com.ibm.hats.common.OIA class, name specifies a customizable setting:

active If true, an operator information area (OIA) is visible in the project. The
default is true.

Note: This must be set to true to turn on the wizard that allows the HATS
theme to change from the default emulator style or to a modern
application style.

appletActive
If true, an indicator is displayed in the OIA if asynchronous update
support is enabled. The default is false.

autoAdvanceIndicator
If true, displays in the OIA whether auto-advance is enabled, if it is
supported by the browser. The default is false.

bidiControls
If true, displays in the OIA the current bidirectional controls to indicate
editing status, if they are supported by the browser. The default is true.

cursorPosition
If true, displays in the OIA the absolute cursor position for the host, such
as 1391. The default is false.

cursorRowColumn
If true, displays in the OIA the row and column of the host cursor, such as
18/031. The default is true.

fieldData
If true, displays in the OIA field extended data, such as numeric only or
field exit required. The default is false.

inputInhibited
If true, displays in the OIA whether the keyboard is locked, preventing
input from the keyboard. The default is true.

insertMode
If true, displays in the OIA whether overwrite mode is enabled, if it is
supported by the browser. The default is true.

Appendix A. HATS Toolkit files 87

msgWaiting
If true, displays an indicator when the host system has one or more
message for the session. The setting is applicable only for 5250 host
systems.

sslCheck
If true, displays in the OIA whether the Host On-Demand connection is
SSL secured. The default is true.

systemWait
If true, displays in the OIA whether the system is locked while waiting for
data to be returned. The default is true.

typeAheadField
If true, displays the type-ahead field in the OIA. This field displays the
type-ahead data as the user enters it, but the field cannot be directly
edited. This setting is only effective when type-ahead support is enabled.
See Enable type-ahead support in the HATS User's and Administrator's
Guide. The default is false.

com.ibm.hats.common.RuntimeSettings
For the com.ibm.hats.common.RuntimeSettings class, name specifies a customizable
setting:

autoEraseFields
Specifies whether modified input fields should have [erasefld] applied
before modified data is entered into the field. The default value is true. If
the value is set to false, space characters may be used to replace data
already entered in the field by the host.

Notes:

1. Any host field that is rendered as multiple input fields will not be
automatically cleared. For example, long host fields that wrap from one
line to the next are rendered as multiple input fields and will not be
automatically cleared before updating.

2. This setting can only be specified at the project level. It cannot be
specified for a single transformation.

enableArrowKeyNavigation
When set to true, fields can be navigated with the keyboard arrow keys on
the rendered host screen. The default is false.

enableAutoAdvance
Specifies whether the cursor moves to the next input field when located at
the end of an input field; that is, when the input field is entirely filled in.
When true, the cursor will move to the next input field when located at
the end of an input field. When false, the cursor does not move to the
next input field unless the user explicitly moves it. The default is false.

enableAutoTabOn
Specifies whether the tab key will move the cursor to the next input field
when the cursor reaches the end of an input field; that is the input field is
entirely filled in. When set to true, based on the order of presentation field
in the browser, the tab key will move cursor in the current field to the next
field when the position of the cursor is at the end of the current field.
When set to false, the tab key does not move to the next input field unless
the user explicitly moves it. The default is false.

enableOverwriteMode
If true, text entered into an input field overwrites text at the cursor

88 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

ugprject.htm#prj_client_typeahead

position one character at a time. If false, text entered into an input field is
inserted at the cursor position pushing existing text ahead. The user can
toggle from this initial setting using the Insert key. The default is true.

enableTypeAhead
When set to true, the user can begin typing data intended for input fields
on the next screen (or screens) sent by the host, before they are received
and processed by HATS. As the next screen (or screens) are received, HATS
sends the previously typed data (type-ahead data) including any keys that
submit the input to the host. See Enable type-ahead support in the HATS
User's and Administrator's Guide. The default is false.

includeLabelsInTabOrder
If true, protected read-only labels are included in the default tab order. By
default, the tabbing order only includes the input fields on the panel. This
setting indicates that read-only labels should also be included.

selectAllOnFocus
If true, all text in a field is selected when the field receives focus, which is
typical behavior for a Web application. If false, no text is selected when
the field receives focus which is typical behavior for a terminal emulator.

Notes:

1. For Web applications:
v The default is true.
v This setting does not affect the enableOverwriteMode setting

behavior.
v This setting is only valid when Internet Explorer is used as the

browser for the application.
2. For rich client applications:
v The default is false.
v When selected, this setting functions like the enableOverwriteMode

setting in that characters are overwritten as a user types into the
field.

v Text is selected only when the keyboard is used to tab into the field.
Text is not selected when clicking the mouse in the field.

suppressUnchangedData
If true, disables all fields whose contents are the same as when the form
was rendered. If false, sends any field contents received from the browser
to the host even if the current presentation space contents are identical for
that field. The default is false.

com.ibm.hats.rcp.transform.widgets.name
Refer to the HATS User's and Administrator's Guide for descriptions of widget
settings.

com.ibm.hats.rcp.ui.views.ToolBarSettings
For the com.ibm.hats.rcp.ui.views.ToolBarSettings class, name specifies a
customizable setting:

displayAs
Specifies how to display items on the main Transformation view toolbar.
Valid values are TEXT, IMAGE, and BOTH, the default is TEXT.

show Specifies whether to show the main Transformation view toolbar. Valid
values are true and false. The default is true.

Appendix A. HATS Toolkit files 89

ugprject.htm#prj_client_typeahead
ugcwset.htm

com.ibm.hats.transform
For the com.ibm.hats.transform class, name specifies a customizable setting:

alternate
The value DEFAULT if an alternateRenderingSet is specified. Otherwise,
unspecified.

alternateRenderingSet
Specifies the name of the rendering set to use for default rendering if
nothing is found to render during transformation of a HATS component
tag.

com.ibm.hats.transform.components.name
Refer to the HATS User's and Administrator's Guide for descriptions of component
settings.

com.ibm.hats.transform.DefaultRendering
For the com.ibm.hats.transform.DefaultRendering class, name is always
applicationDefaultRenderingSetName. The value specifies the name of the
rendering set defined as the default rendering set for the project. The rendering set
name specified on the value setting must match the value of the default attribute
specified for the <defaultRendering> tag.

<textReplacement> tag
The <textReplacement> tag is the enclosing tag for any text replacement values
you define in the project. This tag has no attributes.

<replace> tag
The <replace> tag specifies the text replacement values in a project.

Note: If you are using a bidirectional code page, refer to HATS User's and
Administrator's Guide.

The attributes of the <replace> tag are:

caseSensitive
Specifies whether the case of text replacement values must match before
text replacement occurs. Valid values are true and false. The default is
false.

from Specifies the text you want to replace. The text on the from attribute must
be enclosed in quotes.

to When replacing text with text or HTML coding (Web only), specifies the
replacement string you want to insert in place of the value specified on the
from attribute. The replacement string on the to attribute must be enclosed
in quotes. If you want to replace the text with a button or a link, the code
for the button or link must be added inside the quotes.

regularExpression
Specifies whether Java regular expression support is used as part of the
text replacement algorithm. A regular expression is a pattern of characters
that describes a set of strings. You can use regular expressions to find and
modify occurrences of a pattern. Valid values are true and false. The
default is false.

toImage
When replacing text with an image, specifies the path and name of the

90 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

ugcwset.htm
ugbidi.htm
ugbidi.htm

image you want to insert in place of the value specified on the from
attribute. The path and name of the image on the toImage attribute must
be enclosed in quotes.

matchLTR
When using a bidirectional code page, specifies whether the value specified
on the from attribute is replaced on left-to-right screens. Valid values are
true and false. The default is true.

matchRTL
When using a bidirectional code page, specifies whether the value specified
on the from attribute is replaced on right-to-left screens. Valid values are
true and false. The default is false.

matchReverse
When using a bidirectional code page, specifies whether the value specified
on the from attribute is replaced when the section of the screen in which it
appears has been reversed from the original direction of the page. Valid
values are true and false. The default is false.

Note: Care should be taken when using text replacement. Text replacement with a
disparate number of characters in the strings can cause changes in the
representation of the screen. Depending on the widget used for presenting a
region of a screen, text on a line of the screen can be contracted, expanded,
or forced to a new line.

<defaultRendering> tag
The <defaultRendering> tag is the enclosing tag for all rendering sets you define in
the project.

The attribute of the <defaultRendering> tag is:

default
Specifies the name of the rendering set to use for default rendering in the
project. The rendering set name specified on the default attribute must
match the value specified for the value attribute of the class setting named
com.ibm.hats.transform.DefaultRendering.

<renderingSet> tag
The <renderingSet> tag is the enclosing tag for rendering items defined in the
rendering set.

The attributes of the <renderingSet> tag are:

name The name specified for the rendering set when it was created.

description
The description specified for the rendering set when it was created.

layout Indicates whether to use compact rendering, which eliminates unnecessary
blanks in fields and text on the transformed screen. This attribute should
only be used if you want your default rendering to be compacted. The
only valid value for layout is COMPACT. By default, a rendering set does
not specify this attribute and does not use compact rendering.

separated
Indicates whether to render the output using inline span tags to
differentiate between fields and reduce the amount of HTML and blank

Appendix A. HATS Toolkit files 91

space on the transformed screen. This is the default for Web applications
optimized for mobile devices. By default, a rendering set does not specify
this attribute.

table Indicates whether to render the output in a table and preserve the layout
of the original host screen. This is the default for Web applications not
optimized for mobile devices.

<renderingItem> tag
The <renderingItem> tag is the enclosing tag for a specific rendering item.

The attributes of the <renderingItem> tag are:

componentIdentifier
The name of the rendering item used to coordinate component information
with the transformation. The default setting is the name of the screen
combination event.

associatedScreen
The name of the captured screen used to create this rendering item.

description
The description entered when the rendering item was created.

enabled
Indicates whether this rendering item is enabled. Reflects the state of the
check box on the Rendering page of Project Settings.

endCol
The last column of the host screen to which this rendering item should be
applied. -1 means the rightmost column of the host screen.

endRow
The last row of the host screen to which this rendering item should be
applied. -1 means the bottom row of the host screen.

startCol
The first column of the host screen to which this rendering item should be
applied.

startRow
The first row of the host screen to which this rendering item should be
applied.

type The host component whose contents will be transformed. The attribute
value is the full class name of the host component. There is no default
value for this required attribute.

widget
The widget into which the host component will be transformed.

The following tags are also included in each specific rendering item:

componentSettings
The <componentSettings> tag is the enclosing tag for any settings modified
for the component for this rendering item. This tag has no attributes.

setting
The <setting> tag is the enclosing tag for any settings modified for the
component for this rendering item.

The attributes of the <setting> tag are:

92 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

name Specifies the name of a customizable setting for the component.
The available settings depend on the component.

Refer to HATS User's and Administrator's Guide for descriptions of
component settings.

value Specifies the value of a customizable setting for the component.
The default values vary depending on the setting.

widgetSettings
The <widgetSettings> tag is the enclosing tag for any settings modified for
the widget for this rendering item. This tag has no attributes.

setting
The <setting> tag is the enclosing tag for any settings modified for the
widget for this rendering item.

The attributes of the <setting> tag are:

name Specifies the name of a customizable setting for the widget. The
available settings depend on the widget.

Refer to HATS User's and Administrator's Guide for descriptions of
widget settings.

value Specifies the value of a customizable setting for the widget. The
default values vary depending on the setting.

textReplacements
The <textReplacements> tag is the enclosing tag for any text replacement
specified for this rendering item. This tag has no attributes.

replace
The <replace> tag specifies the text replacement values for this rendering
item.

The attributes of the <replace> tag are:

caseSensitive
Specifies whether the case of text replacement values must match
before text replacement occurs. Valid values are true and false.
The default is false.

from Specifies the text you want to replace. The text on the from
attribute must be enclosed in quotes.

to Specifies the replacement string you want to insert in place of the
value specified on the from attribute. The replacement string on
the to attribute must be enclosed in quotes.

regularExpression
Specifies whether Java regular expression support is used as part
of the text replacement algorithm. A regular expression is a pattern
of characters that describes a set of strings. You can use regular
expressions to find and modify occurrences of a pattern. Valid
values are true and false. The default is false.

toImage
When replacing text with an image, specifies the path and name of
the image you want to insert in place of the value specified on the
from attribute. The path and name of the image on the toImage
attribute must be enclosed in quotes.

Appendix A. HATS Toolkit files 93

ugcwset.htm
ugcwset.htm

matchLTR
When using a bidirectional code page, specifies whether the value
specified on the from attribute is replaced on left-to-right screens.
Valid values are true and false. The default is true.

matchRTL
When using a bidirectional code page, specifies whether the value
specified on the from attribute is replaced on right-to-left screens.
Valid values are true and false. The default is false.

matchReverse
When using a bidirectional code page, specifies whether the value
specified on the from attribute is replaced when the section of the
screen in which it appears has been reversed from the original
direction of the page. Valid values are true and false. The default
is false.

Note: Care should be taken when using text replacement. Text replacement
with a disparate number of characters in the strings can cause
changes in the HTML representation of the screen. Depending on
the widget used for presenting a region of a screen, text on a line of
the screen can be contracted, expanded, or forced to a new line.

<globalRules> tag
The <globalRules> tag is the enclosing tag for any global rules you define in the
project. It has no attributes.

<rule> tag
The <rule> tag defines a global rule.

The attributes of the <rule> tag for project-level rules are the same as for screen
customization-level global rules. However, when you create a project-level and a
screen customization-level global rule using the same input field, the screen
customization-level rule will have a higher priority. The <rule> tag attributes are:

associatedScreen
The name of a screen capture in the project, from which the global rule is
defined.

description
The description entered when the global rule was created.

enabled
Indicates whether this global rule is enabled. Reflects the state of the check
box on the Rendering page of Project Settings.

endCol
The last column of the host screen to which this global rule should be
applied. -1 means the rightmost column of the host screen.

endRow
The last row of the host screen to which this global rule should be applied.
-1 means the bottom row of the host screen.

name The name that will be shown in the list of global rules on the Rendering
page of Project Settings.

94 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

startCol
The first column of the host screen to which this global rule should be
applied.

startRow
The first row of the host screen to which this global rule should be
applied.

transformationFragment
The name of the transformation fragment file associated with this global
rule. This file contains the information specifying how to transform the
host component. It will be included in a transformation if the appropriate
input fields are present in the host screen.

type The pattern type component for this global rule, taken from the first page
of the Create Global Rule wizard. The type can be one of the following:

com.ibm.hats.transform.components. InputFieldByTextPatternComponent
This pattern component recognizes input fields on the host screen
based on text near the fields.

com.ibm.hats.transform.components. AllInputFieldsPatternComponent
This pattern component recognizes all input fields on the host
screen.

com.ibm.hats.transform.components.
InputFieldBySizePatternComponent

This pattern component recognizes input fields on the host screen
based on the size of the input fields.

com.ibm.hats.transform.components.
InputFieldByPositionPatternComponent

This pattern component recognizes input fields on the host screen
by the field's position on the host screen.

The following tags are also included in each specific global rule:

componentSettings
The <componentSettings> tag is the enclosing tag for any settings defined
for the pattern type component specified on the type attribute of the
<rule> tag. This tag has no attributes.

setting
The <setting> tag is the enclosing tag for any settings defined for the
pattern type component specified on the type attribute of the <rule> tag.

The attributes of the <setting> tag are:

name Specifies the name of a customizable setting for the pattern type
component. The available settings depend on the component.
v For the

com.ibm.hats.transform.components.InputFieldByTextPattern
Component, the settings for the name attribute are:

caseSensitive
Specifies whether the case of the text on the text setting
must match before the pattern is recognized. Valid
values are true and false. The default is true.

immediatelyNextTo
Specifies which input fields you want to transform.Valid
values are:

Appendix A. HATS Toolkit files 95

true Specifies that only the nearest input field should
be transformed.

false Specifies that all input fields should be
transformed.

The default is false.

location
Specifies where text in a protected field, as specified on
the text setting, must be in relation to input fields for
this global rule to be applied. Valid values are:

ABOVE
Specifies that the text must be above the input
field.

BELOW
Specifies that the text must be below the input
field.

LEFT Specifies that the text must be to the left of the
input field.

RIGHT
Specifies that the text must be to the right of the
input field.

The default is RIGHT.

text Specifies some text in a protected field of the host screen.
Valid values are any text in a protected field on the host
screen.

v For the
com.ibm.hats.transform.components.AllInputFieldsPattern
Component, there are no component settings.

v For the
com.ibm.hats.transform.components.InputFieldBySizePattern
Component, the setting for the name attribute is fieldSize.Valid
values are the sizes of any input fields on the host screen.

v For the com.ibm.hats.transform.components.
InputFieldByPositionPatternComponent, the setting for the name
attribute is enableFieldLength. Valid values are true and false.

Note: When enableFieldLength is specified, the entire field (as
specified by the fieldSize attribute) must be within the
defined region boundary in order for the field to be
recognized. The region boundary is defined by the values
for the startRow, endRow, startCol and endCol attributes.

Connection files (.hco)
Each connection that you define in a HATS project is represented by a connection
file. The connection (.hco) files are stored in the project_name/Connections folder,
where project_name is the name you gave the project when you created it. The
default connection, which is created using the connection values that you specify
in the New HATS Project wizard, is stored in main.hco.

96 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

<hodconnection> tag
The <hodconnection> tag begins the connection definition and specifies several
characteristics for the connection.

The attributes of the <hodconnection> tag are:

certificateFile
Specifies the name of the file from which the project's SSL certificate was
imported, if any.

codePage
Specifies the numeric value for the code page used on this connection. The
default value is the value you selected when you created the project. Each
connection can use a different code page. See the description of the
codePageKey attribute for the code page numbers.

codePageKey
Specifies the usage key that corresponds to the numeric code page. The
default value is KEY_US. Valid values for codePage and the location or
usage key are:

Table 18. Code pages and usage keys

Code page Usage key

037 KEY_BELGIUM
KEY_BRAZIL
KEY_CANADA
KEY_NETHERLANDS
KEY_PORTUGAL
KEY_US

273 KEY_AUSTRIA
KEY_GERMANY

274 KEY_BELGIUM_OLD

275 KEY_BRAZIL_OLD

277 KEY_DENMARK
KEY_NORWAY

278 KEY_FINLAND
KEY_SWEDEN

280 KEY_ITALY

284 KEY_SPAIN
KEY_LATIN_AMERICA

285 KEY_UNITED_KINGDOM

297 KEY_FRANCE

420 KEY_ARABIC

424 KEY_HEBREW

500 KEY_MULTILINGUAL

803 KEY_HEBREW_OLD

838 KEY_THAI

Appendix A. HATS Toolkit files 97

Table 18. Code pages and usage keys (continued)

Code page Usage key

870 KEY_BOSNIA_HERZEGOVINA
KEY_CROATIA
KEY_CZECH
KEY_HUNGARY
KEY_POLAND
KEY_ROMANIA
KEY_SLOVAKIA
KEY_SLOVENIA

871 KEY_ICELAND

875 KEY_GREECE

924 KEY_MULTILINGUAL_ISO_EURO

930 KEY_JAPAN_KATAKANA

933 KEY_KOREA_EX

937 KEY_ROC_EX

939 KEY_JAPAN_ENGLISH_EX

1025 KEY_BELARUS
KEY_BULGARIA
KEY_MACEDONIA
KEY_RUSSIA
KEY_SERBIA_MONTEGRO

1026 KEY_TURKEY

1047 KEY_OPEN_EDITION

1112 KEY_LATVIA
KEY_LITHUANIA

1122 KEY_ESTONIA

1123 KEY_UKRAINE

1137 KEY_HINDI

1140 KEY_BELGIUM_EURO
KEY_BRAZIL_EURO
KEY_CANADA_EURO
KEY_NETHERLANDS_EURO
KEY_PORTUGAL_EURO
KEY_US_EURO

1141 KEY_AUSTRIA_EURO
KEY_GERMANY_EURO

1142 KEY_DENMARK_EURO
KEY_NORWAY_EURO

1143 KEY_FINLAND_EURO
KEY_SWEDEN_EURO

1144 KEY_ITALY_EURO

1145 KEY_LATIN_AMERICA_EURO
KEY_SPAIN_EURO

1146 KEY_UNITED_KINGDOM_EURO

1147 KEY_FRANCE_EURO

1148 KEY_MULTILINGUAL_EURO

1149 KEY_ICELAND_EURO

98 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Table 18. Code pages and usage keys (continued)

Code page Usage key

1153 KEY_BOSNIA_HERZEGOVINA_EURO
KEY_CROATIA_EURO
KEY_CZECH_EURO
KEY_HUNGARY_EURO
KEY_POLAND_EURO
KEY_ROMANIA_EURO
KEY_SLOVAKIA_EURO
KEY_SLOVENIA_EURO

1154 KEY_BELARUS_EURO
KEY_BULGARIA_EURO
KEY_MACEDONIA_EURO
KEY_RUSSIA_EURO
KEY_SERBIA_MONTEGRO_EURO

1155 KEY_TURKEY_EURO

1156 KEY_LATVIA_EURO
KEY_LITHUANIA_EURO

1157 KEY_ESTONIA_EURO

1158 KEY_UKRAINE_EURO

1160 KEY_THAI_EURO

1166 KEY_KAZAKHSTAN_EURO

1364 KEY_KOREA_EURO

1371 KEY_ROC_EURO

1388 KEY_PRC_EX_GBK

1390 KEY_JAPAN_KATAKANA_EX_EURO

1399 KEY_JAPAN_ENGLISH_EX_EURO

connecttimeout
Specifies the time that HATS attempts to connect to a host. Specify a
number of seconds between 1 and 2147483647. The initial default is 120
seconds.

description
Specifies the description for the connection when it was created.

disableFldShp
When using a bidirectional code page, specifies whether you want Arabic
data in password fields submitted to the host in isolated form or in shaped
form. Valid values are true and false. There is no initial default.

disableNumSwapSubmit
When using a bidirectional code page, specifies whether you want to
disable entry of Arabic-Western numbers, that is, allow entry of only
Arabic-Indic numbers in RTL screens. Do this so that, when submitted, all
numbers are submitted as Arabic-Western numbers. Valid values are true
and false. There is no initial default.

disconnecttimeout
Specifies the time that HATS attempts to disconnect from a host. Specify a
number of seconds in the range of 1-2147483647. The initial default is 120
seconds.

Appendix A. HATS Toolkit files 99

enableScrRev
When using a bidirectional code page, specifies which pages of an
application should display a Screen Reverse button to enable users to
reverse the direction of displayed text and input fields. Valid values are:

(blank)
The Screen Reverse button is not placed on any screens.

Customized
The Screen Reverse button is placed on screens that match a
screen customization and on screens that do not match a screen
customization, in other words, on all screens. There is no option to
place the Screen Reverse button only on screens that match a
screen customization.

Non-customized
The Screen Reverse button is placed only on screens that do not
match a screen customization.

There is no initial default.

host Specifies the name of the host to which the connection is made.

hostSimulationName
Specifies the name of the host simulation trace file to use instead of a live
connection.

LUName
Valid only on enhanced 3270 sessions (TNEnhanced="true"). Sets the
LUName property, which is the LU name used during enhanced
negotiation. Values are in string format. Maximum length of LUName is 17
characters. There is no default. To configure print support for your 3270
HATS project, you must specify that the host type is 3270E. When you add
the LUName parameter to the list of connection settings, do not use the
printer LU name; use the name of your display LU or a pool of display
LUs.

LUNameSource
Valid only on enhanced 3270 sessions (TNEnhanced="true"). Specifies the
source of the LU name for the connection. Valid values are:

automatic
The LU name is automatically assigned when the connection is
established.

prompt
Prompt the end user for the LU name. If pooling is enabled,
prompt should not be used.

session
The LU name is defined using an HTTP session variable. The
LUName attribute names the session variable. If pooling is
enabled, session should not be used.

value The LU name is defined on the LUName attribute.

There is no initial default.

port Specifies the number of the port through which the connection to the host
is made. The valid range for ports is 0–65535. The initial default is 23.

100 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

screenSize
Specifies the number of rows and columns that the host terminal displays.
Valid values for screenSize are:
v 2=24x80
v 3=32x80
v 4=43x80
v 5=27x132
v 6=24x132 (VT only)

The initial default screen size is 24 x 80.

sessionType
Specifies the type of terminal the host terminal displays. Valid values for
type are:
v 1=3270
v 2=5250
v 3=VT

The initial default is 3270.

singlelogon
When user lists are defined in the project, specifies whether a user ID can
be used more than once at a time. Valid values are:

true The user ID can be used only once at a time.

false The user ID can connect multiple times simultaneously.

The initial default is false.

SSL Specifies whether SSL is enabled. Valid values are:

true SSL is enabled for the project.

false SSL is not enabled for the project.

TNEnhanced
Valid only on 3270 connections. Specifies whether the connection is a
TN3270E connection. Valid values are true and false. The initial default is
true.

VTTerminalType
Valid only on VT connections. Indicates the type of VT terminal. Valid
values are:
v 1=VT420_7
v 2=VT420_8
v 3=VT100
v 4=VT52

WFEnabled
Valid only on 5250 connections. Specifies whether the connection is a
5250W connection. Valid values are true and false. The initial default is
false.

workstationID
Valid only on 5250 and 5250W connections. When the workstationIDSource
attribute is set to either session or value, specifies the HTTP session
variable or the workstation ID for the connection. There is no initial
default.

Appendix A. HATS Toolkit files 101

workstationIDSource
Valid only on 5250 and 5250W connections. Specifies the source of the
workstation ID for the connection. Valid values are:

automatic
The workstation ID is automatically assigned when the connection
is established.

prompt
Prompt the end user for the workstation ID. If pooling is enabled,
prompt should not be used.

session
The workstation ID is defined using an HTTP session variable. The
workstationID attribute names the session variable. If pooling is
enabled, session should not be used.

value The workstation ID is defined on the workstationID attribute.

There is no initial default.

<otherParameters> tag
The <otherParameters> tag specifies additional Host On-Demand session
parameters.

Host On-Demand session parameters supported by HATS include:

ENPTUI
Determines whether a project with a connection to a 5250 host can use
display data stream (DDS) keywords for the Enhanced Non-Programmable
Terminal User Interface (ENPTUI). Valid values are true and false. The
default value is false.

Lamalef
Sets the LamAlef property, which determines whether LamAlef should be
expanded or compressed. This property applies to Arabic sessions only.
Values are in string format. Valid values are:
v LAMALEF_ON
v LAMALEF_OFF

The default value is LAMALEF_OFF.

numeralShape
Sets the numeralShape property. This property applies to bidirectional
sessions only. Values are in string format. The default value is NOMINAL.

numericSwapEnabled
Sets the Numeric swapping property. This property applies to Arabic 3270
sessions only. Valid values are true and false. The default value is true.

roundTrip
Sets the roundTrip property. This property applies to bidirectional sessions
only. Values are in string format. Valid values are:
v ROUNDTRIP_ON
v ROUNDTRIP_OFF

The default value is ROUNDTRIP_ON.

102 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

SecurityProtocol
Sets the SecurityProtocol property, which indicates whether to use the TLS
v1.0 protocol or the SSL protocol for providing security. Values are in string
format. The default value is TLS.

SSLServerAuthentication
Sets the SSLServerAuthentication property, which indicates whether SSL
server authentication is enabled. Valid values are true and false. The
default value is false.

symmetricSwapEnabled
Sets the symmetric swapping property. This property applies to Arabic
3270 sessions only. Valid values are true and false. The default value is
true.

textOrientation
Sets the textOrientation property. This property applies to bidirectional
sessions only. Values are in string format. Valid values are:
v LEFT_TO_RIGHT
v RIGHT_TO_LEFT

The default value is LEFT_TO_RIGHT.

ThaiDisplayMode
Sets the Thai display mode property. This property applies to Thai sessions
only. Values are in string format. The default value is THAI_MODE_5.

workstationID
Sets the workstationID property, which is used during enhanced
negotiation for 5250. Values are in string format. All lowercase characters
are converted to uppercase. There is no default value.

Kerberos ticket support

To enable support for Kerberos tickets, for rich client projects using 5250 only, add
the following lines inside the <otherParameters> tag in the application.hap file:

<parameter name="ssoEnabled" value="true"/>

<parameter name="ssoType" value="ssoAcquireKerberosTicket"/>

<classSettings> tag
The <classSettings> tag is the enclosing tag for the Java classes you include in the
connection definition.

<class> tag
The <class> tag specifies a class whose attributes are defined in the enclosed
<settings> tags.

The attributes of the <class> tag are:

name Specifies one of the following Java classes:
v com.ibm.hats.common.HATSPrintSettings
v com.ibm.hats.common.NextScreenSettings

The class names on the name attribute must be enclosed in quotes.

Appendix A. HATS Toolkit files 103

<setting> tag
The <setting> tag specifies the settings associated with the class in which the
<setting> tag is enclosed.

The attributes of the <setting> tag are:

name Specifies the name of a customizable setting for the class defined by the
name attribute of the <class> tag. The available settings depend on the
class.

For the com.ibm.hats.common.HATSPrintSettings class, the customizable
settings are:

printFontName
Specifies the font in which you want your output printed. Valid
values depend on the value of the codePage attribute.

printNumSwapSupport
Specifies whether numeric swapping is enabled. This property
applies to Arabic 3270 sessions only, when printRTLSupport is
enabled. English numerals are replaced by Arabic numerals in
right-to-left screens and Arabic numerals are replaced by English
numerals in right-to-left Screens. Valid values are true and false.
The default value is true.

printOrientation
Specifies how your printed output is positioned on the page. Valid
values for printOrientation are:

PDF_ORIENTATION_PORTRAIT
Orients the paper vertically.

PDF_ORIENTATION_LANDSCAPE
Rotates the paper 90 degrees clockwise.

printPaperSize
Specifies the size of the paper on which to print your output. Valid
values for printPaperSize are:

ISO_A3
ISO/DN & JIS A4, 297 x 420 mm

ISO_A4
ISO/DN & JIS A4, 210 x 297 mm

ISO_A5
ISO/DN & JIS A4, 148 x 210 mm

ISO_B4
ISO/DN B4, 250 x 353 mm

ISO_B5
ISO/DN B5, 176 x 250 mm

JIS_B4
JIS B4, 257 x 364 mm

JIS_B5
JIS B5, 182 x 257 mm

ISO_C5
ISO/DN C5, 162 x 229 mm

104 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

ISO_DESIGNATED_LONG
ISO/DN Designated Long, 110 x 220 mm

EXECUTIVE
Executive, 7 1/4 x 10 1/2 in

LEDGER
Ledger, 11 x 17 in

NA_LETTER
North American Letter, 8 1/2 x 11 in

NA_LEGAL
North American Legal, 8 1/2 x 14 in

NA_NUMBER_9_ENVELOPE
North American #9 Business Envelope, 3 7/8 x 8 7/8 in

NA_NUMBER_10_ENVELOPE
North American #10 Business Envelope, 4 1/8 x 9 1/2 in

MONARCH_ENVELOPE
Monarch Envelope, 3 7/8 x 7 1/2 in

CONTINUOUS_80_COLUMNS
Data Processing 80 Columns Continuous Sheet, 8 x 11 in

CONTINUOUS_132_COLUMNS
Data Processing 132 Columns Continuous Sheet, 13 1/5 x
11 in

printRTLSupport
Specifies whether right-to-left print support is enabled. This
property applies to Arabic 3270 sessions only. Bidirectional files can
be either RTL or LTR files. Valid values are true and false. The
default value is true.

printSupport
Specifies whether your project includes print capability. Valid
values for printSupport are true and false. The initial default is
false.

printSymSwapSupport
Specifies whether symmetric swapping is enabled; swapping
characters are swapped in right-to-left screens. This property
applies to Arabic 3270 sessions only, when printRTLSupport is
enabled. Valid values are true and false. The default value is
true.

printURL
Specifies the URL for a System i® Access for Web Printer Output
window on a 5250 server. The default URL is http://hostname/
webaccess/iWASpool, where hostname is the name of the 5250
server.

The customizable settings for the com.ibm.hats.common.NextScreenSettings
class are:

default.appletDelayInterval
Specifies the maximum time (in milliseconds) that the server waits
until a full host screen has arrived for a session running in
asynchronous update mode. The initial default value is 400
milliseconds.

Appendix A. HATS Toolkit files 105

default.blankScreen
Specifies how to handle a blank screen received at connection
startup. Valid values are:

normal
Display the blank screen.

sendkeys
Send the host key defined on the default.blankScreen.keys
setting.

timeout
Wait for the connection to time out before issuing an error
message.

The default is normal.

default.blankScreen.keys
Specifies the host key to send when default.blankScreen is set to
sendkeys.

default.delayInterval
Specifies the maximum time, in milliseconds, that the server waits
for the arrival of screen updates after the initial screen update. The
initial default value is 1200 milliseconds.

default.delayStart
Specifies the minimum time (in milliseconds) that the server waits
until the first full host screen has arrived after the host connection
becomes ready. The initial default value is 2000 milliseconds.

nextScreenClass
Specifies a class that turns off the default, speed-optimized,
algorithm in favor of accuracy. The class for the value attribute is
com.ibm.hats.runtime.TimingNextScreenBean. As a result, screen
transitions might be slower. The setting default.delayInterval is
now the minimum amount of time (in milliseconds) per screen
transition. The default.delayInterval value has a default of 1200
milliseconds, but you can customize it for your network and your
host application. If you raise this value, remember that HATS waits
at least this long for the host screen to settle.

oiaLockMaxWait
Specifies the maximum time (in milliseconds) that HATS should
wait after the host screen has settled to ensure that the OIA system
lock status has been released. The value can be in the range of
0–600000 milliseconds. The initial default value is 300000
milliseconds.

value The values for the settings are included in the description of the individual
settings.

<poolsettings> tag
The <poolsettings> tag defines pooling parameters for the connection.

The attributes of the <poolsettings> tag are:

enabled
Specifies whether pooling is enabled for this connection. Valid values for
enabled are true and false. The initial default is false.

106 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

maxbusytime
The number of seconds before a connection that is in use by an end user
will be terminated. If you do not want active connections to end, set this
field to -1. This setting is available for connections that have pooling
enabled as well as for connections that have pooling disabled. For a
connection with pooling enabled, the connection returns to the pool if the
number of available connections in the pool is less than the minimum
number of connections you specified to remain connected. Otherwise, this
connection is discarded. For a connection with pooling disabled, the
connection is discarded. Valid number of seconds is -1 or in the range of
60-2147483647. The default is -1 (no maximum busy time).

maxconnections
The maximum number of connections in the pool that can be active. This
setting is available only for connections that have pooling enabled. Valid
number of connections is in the range of 1-2147483647. The default is 1.
When you reach the maximum specified and an additional request for a
connection is received, HATS can either wait for the next available
connection or create a new connection.

maxidletime
The number of seconds before a connection that is not in use by an end
user will be terminated and removed from the pool. If you do not want
inactive connections to end, set this field to -1. This setting is available
only for connections with connection pooling enabled. The minimum
number of connections you specify remain connected, whether or not they
are used. Valid number of seconds is -1 or in the range of 60-2147483647.
The default is -1 (no maximum idle time).

minconnections
The number of idle connections in the pool that remain connected. This
setting is available only for connections that have pooling enabled and
have the maxidletime before disconnection set to some value other than -1.
Valid number of connections is between 0 and 2147483647. The default is 0
(do not keep connections connected).

overflowallowed
Whether a new, non-pooled connection should be created if the maximum
limit of connections has been reached. If this value is false, you must
specify the number of seconds to wait for a pooled connection to become
available. If the time to wait elapses and a connection does not become
available, HATS returns an error. If this value is true, a new, non-pooled
connection will be created. When the end user finishes with this type of
connection, it is not put back in the pool, but discarded.

waittimeout
The number of seconds to wait for a pooled connection to become
available once the maximum limit of connections has been reached, and
another request comes in. Valid number of seconds is between 0 and
2147483647, or -1 if you want to wait forever. The default is 120.

<userconfig> tag
The <userconfig> tag defines a user list for the connection. The tags and data
within the <userconfig> tag are complex and can be corrupted by manual editing.
To protect the integrity of your user list, do not manually edit the <userconfig>
data. Instead, use the User List tab on the Connection editor to create or modify a
user list. By default, a host connection does not specify this tag and does not have
a user list.

Appendix A. HATS Toolkit files 107

Screen combination files (.evnt)
The screen combination files defines how a host screen is recognized, the actions
HATS performs when a screen is recognized, how to define the end of the screen
combination, and how to navigate between screens. The screen combination (.evnt)
files are stored in the project_name/profiles/events/screencombinations directory.
You can view and edit the source of the screen combination files by double-clicking
on the name of the screen combination in the HATS Projects view to open the
screen combination editor. The source for the file can be viewed by clicking on the
Source tab. You can modify screen combination files using the Begin Screen,
Render, Navigation, End Screen, Actions, Text replacement, or Source tabs in the
editor. HATS Toolkit updates the affected information on other tabs when you
make changes on any tab. The screen combination event files contain tags to define
how a host screen is recognized and the actions and navigations that will occur
when the host screen is recognized.

Screen combination adds several tags to those found in screen customization
(.evnt) files.

<combinations> tag
This is the container for the combination information. It consists of a type attribute
and a rendering item detailing the screen combination component.

type The type parameter determines how the screen transformation will be
aggregated.

If the string value is set to dynamic, the screen transformation can add
screens to the combined area while the user is using the screen
transformation.

If the string value is set to normal or is missing, the individual screens
compound prior to allowing the user to interact with the screen
transformation. Rich Client screen combinations are limited to normal
processing.

<enddescription> tag
This is the description for the screen criteria used to determine if the screen
combination end screen has been reached. The tags and details match the
description tag. It has an attribute associatedScreen for the screen associated with
the end screen.

associatedScreen
This is the screen capture associated with the end screen.

<navigation> tag
The navigation contains the commands needed to move between screens to gather
and place data. It consists of a screenUp and screenDown tag.

<screenUp> tag
The commands necessary to traverse to a screen backward in the combination. This
is used to return data to the correct place in a screen combination. It can consist of
keyPress, setCursor, and sendText tags.

108 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

<screenDown> tag
The commands necessary to traverse to a screen forward in the combination. This
is used to create the screen combination view as well as return data to the correct
place in a screen combination. It can consist of keyPress, setCursor, and sendText
tags.

<keyPress> tag
This navigation command is the equivalent of a sendKey. It has a value attribute,
which must be a valid HOD key command, for the HOD command to send.

value The value attribute for the keyPress tag should be a valid HOD key
command.

<setCursor> tag
This navigation command allows cursor positioning on the screen. It has a row
and a column attribute for the cursor positioning.

row The row attribute should be a 1-based integer that equates to a position on
the screen. This positions the vertical component of the cursor position.

column
The column attribute should be a 1-based integer that equates to a position
on the screen. This positions the horizontal component of the cursor
position.

<sendText>
This navigation command is the equivalent of a sendKey. It has a value attribute,
which must be valid text for the host field, for the text to send.

value The value attribute for the sendText tag should be valid text for the host
field.

Screen customization files (.evnt)
The screen customization files define how a host screen is recognized, and also
defines the actions HATS performs when a screen is recognized.

The screen customization (.evnt) files are stored in the project_name/profiles/events/
screencustomizations directory. You can view and edit the source of the screen
customization files by double-clicking on the name of the screen customization in
the HATS Project View to open the screen customization editor. The source for the
file can be viewed by clicking on the Source tab.

You can modify screen customization files using the Screen Recognition Criteria,
Actions, Text replacement, or Source tabs in the editor. HATS Toolkit updates the
affected information on other tabs when you make changes on any tab.

The screen customization event files contain tags to define how a host screen is
recognized and the actions that will occur when the host screen is recognized.

<event> tag
Begins the definition of the screen customization. The event tag has the following
attributes:

Appendix A. HATS Toolkit files 109

description
If you supplied a description of the screen customization when you created
it, that description is defined in this attribute.

type For a screen customization, type is always screenRecognize. For combined
screens, type is screenCombination.

<actions> tag
This is the enclosing tag for all of the actions defined for a screen customization. It
has no attributes.

<apply> tag
Defines the action for applying a transformation. The attributes of the <apply> tag
are:

applyGlobalRules
Specifies whether HATS should look for global rules on this host screen.
Default is true.

applyTextReplacement
Specifies whether HATS should look for text replacements on this host
screen. Default is true. See the <replace> tag for further information on
how to use text replacement.

enabled
Indicates whether this action is enabled for use. The default is true.

immediateKeyset
Defines the host keys sent to the host immediately when pressed by the
end user of your project. If you did not define any host keys to be sent to
the host immediately, this attribute has an empty value.

template
Names the template file that surrounds the transformation being applied. If
the default template is being used to surround the transformation, this
attribute has an empty value.

transformation
Names the transformation file that is to be applied for this action.

<insert> tag
Defines the action for inserting a global variable or a string. The attributes of the
<insert> tag are:

enabled
Indicates whether this action is enabled for use. The default is true.

row Defines the starting row on the host screen where the value is to be
inserted.

col Defines the starting column on the host screen where the value is to be
inserted.

source Specifies whether the value to be inserted is a string or the value of a
global variable. Valid values are string and variable.

value Specifies either the string to be inserted onto the host screen or the name
of a global variable from which the value is taken.

fill If the source of the value to be inserted is an indexed global variable, fill
specifies whether the indices of the global variable are to be concatenated

110 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

and inserted at the specified position, or inserted into a rectangular region
of the host screen. Valid values are concatenate and rectangular.

index If the source of the value to be inserted is an indexed global variable, index
specifies the number of the index that is to be used as the value to be
inserted onto the host screen.

shared
If the source of the value to be inserted is a global variable, shared
specifies whether this global variable is shared between applications
running in the same rich client environment.

<extract> tag
Defines the action for extracting a global variable. The attributes of the <extract>
tag are:

enabled
Indicates whether this action is enabled for use. The default is true.

srow Defines the starting row on the host screen of the text being extracted.

erow Defines the ending row on the host screen of the text being extracted.

scol Defines the starting column on the host screen of the text being extracted.

ecol Defines the ending column on the host screen of the text being extracted.

name Specifies the name of the global variable to which the text is extracted. This
can be an existing global variable or a new global variable.

overwrite
Specifies whether the text extracted is to overwrite the value of an existing
global variable. Valid values are true and false.

indexed
Specifies whether the text extracted is a single string or a list of strings,
where each string in the list corresponds to a single row of text from the
extracted region. Valid values are true and false.

index If an existing global variable is indexed, this attribute specifies the index
number to which the extracted value is to be written. The effect of this
attribute is dependent on the value of the overwrite attribute. If
overwrite=true, the extracted value overwrites the existing variable,
starting at the specified index. If overwrite=false, the extracted value is
inserted into the existing variable, beginning at the specified index.

shared
Shared specifies whether the global variable is shared between applications
running in the same rich client environment.

<set> tag
Defines the action for setting a global variable. The attributes of the <set> tag are:

enabled
Indicates whether this action is enabled for use. The default is true.

name Specifies the name of the global variable being set. This can be an existing
global variable or a new global variable.

shared
Specifies whether the global variable being set is shared between
applications running in the same rich client environment.

Appendix A. HATS Toolkit files 111

type Specifies whether the value of the global variable being set comes from a
fixed constant or a calculated value. Valid values are string and
calculate.

value Specifies the value being assigned to the global variable.

overwrite
Specifies whether the value being set is to overwrite the value of an
existing global variable. Valid values are true and false.

index If the value being set is being written to an existing indexed global
variable, this attribute specifies the index number to which the value being
set is written. The effect of this attribute is dependent on the value of the
overwrite attribute. If overwrite=true, the value being set overwrites the
existing variable, beginning at the specified index. If overwrite=false, the
value being set is inserted into the existing variable, beginning at the
specified index.

op1 Specifies whether the first operand of a calculated value is a fixed constant
or the value of an existing global variable. Valid values are a fixed constant
or the name of a global variable.

op1_type
Specifies whether the value of the first operand of a calculated value is set
as a fixed constant or from an existing global variable. Valid values are
string and variable.

op1_index
If the source of the value of the first operand of a calculated value is an
indexed global variable, op1_index specifies the number of the index used
as the value for the calculation.

op1_shared
If the value of op1 is a global variable, shared specifies whether this global
variable is shared between applications running in the same rich client
environment.

op Specifies the type of operation to occur between the first and second
operands of a calculated value. Valid values are concatenate, + (add), -
(subtract), * (multiply), / (divide), and % (modulo).

op2 Specifies whether the second operand of a calculated value is a fixed
constant or the value of an existing global variable. Valid values are a fixed
constant or the name of a global variable.

op2_type
Specifies whether the value of the second operand of a calculated value is
set as a fixed constant or from an existing global variable. Valid values are
string and variable.

op2_index
If the source of the value of the second operand of a calculated value is an
indexed global variable, op2_index specifies the number of the index used
as the value for the calculation.

op2_shared
If the value of op2 is a global variable, shared specifies whether this global
variable is shared between applications running in the same rich client
environment.

dec Specifies the number of decimal places to which a calculated value is
rounded. Valid values are 0–999.

112 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

<execute> tag
Defines the action for executing business logic. The attributes of the <execute> tag
are:

enabled
Indicates whether this action is enabled for use. The default is true.

class Names the Java class that contains your business logic. The class value is
required.

method
Names the method inside the class that executes the business logic. The
method value is required.

package
Names the package that the Java class resides in on your file system. The
package value is optional.

<show> tag
Defines the action for showing a URL. The <show> tag has the following
attributes:

enabled
Indicates whether this action is enabled for use. The default is true.

template
Specifies the template to be used for this action.

url Identifies the Uniform Resource Locator (URL) of the Web page to show.
This attribute is required.

<forwardtoURL> tag
Defines the action for passing control from a project to a JSP that invokes an
Integration Object. The <forwardtoURL> tag has the following attributes:

enabled
Indicates whether this action is enabled for use. The default is true.

startStateLabel
If forwarding control to a JSP with an Integration Object chain, specifies
the start state label of the first Integration Object in the chain to be
executed.

url Specifies the URL of the Integration Object JSP.

<disconnect> tag
Disconnects the default connection. Use this action carefully and only for events
from which you cannot recover. The <disconnect> tag has the following attribute:

enabled
Indicates whether this action is enabled for use. The default is true.

<play> tag
Defines the action for playing a macro. The <play> tag has the following attributes:

enabled
Indicates whether this action is enabled for use. The default is true.

macro Names the macro to be played. This attribute is required.

Appendix A. HATS Toolkit files 113

<perform> tag
Defines the action for playing a macro on any connection, not necessarily the
default connection. This action does not affect the current host screen. The
<perform> tag has the following attributes:

connection
The connection on which the macro is to be played. The default is main.

enabled
Indicates whether this action is enabled for use. The default is true.

macro The name of the macro to be played.

<pause> tag
Defines the action for waiting for some time before continuing with normal
processing. The <pause> tag has the following attributes:

enabled
Indicates whether this action is enabled for use. The default is true.

time Specifies the time, in milliseconds, to pause before continuing with normal
processing.

<sendkey> tag
Defines the action for sending a specified key to the host screen to perform an
action. The <sendkey> tag has the following attributes:

enabled
Indicates whether this action is enabled for use. The default is true.

key Indicates key to send to the host screen.

row Defines the starting row on the host screen where the key is to be inserted.

col Defines the starting column on the host screen where the key is to be
inserted.

<globalRules> tag
The <globalRules> tag is the enclosing tag for any global rules you define for
screen events. It has no attributes.

<rule> tag
The <rule> tag defines a global rule.

The attributes of the <rule> tag for screen customization-level rules are the same as
for project-level global rules. However, when you create a screen
customization-level and a project-level global rule using the same input field, the
screen customization-level rule will have a higher priority. The <rule> tag
attributes are:

associatedScreen
The name of a screen capture in the project, from which the global rule is
defined.

componentSettings
Any settings configured for the global rule, such as recognition criteria.

description
The description entered when the global rule was created.

114 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

enabled
Indicates whether this global rule is enabled. Reflects the state of the check
box on the Rendering page of Project Settings.

endCol
The last column of the host screen to which this global rule should be
applied. -1 means the rightmost column of the host screen.

endRow
The last row of the host screen to which this global rule should be applied.
-1 means the bottom row of the host screen.

name The name that will be shown in the list of global rules on the Rendering
page of Project Settings.

startCol
The first column of the host screen to which this global rule should be
applied.

startRow
The first row of the host screen to which this global rule should be
applied.

transformationFragment
The name of the transformation fragment file associated with this global
rule. This file contains the information specifying how to transform the
host component. It will be included in a transformation if the appropriate
input fields are present in the host screen.

type The pattern type component for this global rule, taken from the first page
of the Create Global Rule wizard. The type can be one of the following:

com.ibm.hats.transform.components.InputFieldByTextPatternComponent
This pattern component recognizes input fields on the host screen
based on text near the fields.

com.ibm.hats.transform.components.AllInputFieldsPatternComponent
This pattern component recognizes all input fields on the host
screen.

com.ibm.hats.transform.components.InputFieldBySizePatternComponent
This pattern component recognizes input fields on the host screen
based on the size of the input fields.

The following tags are also included in each specific global rule:

componentSettings
The <componentSettings> tag is the enclosing tag for any settings defined
for the pattern type component specified on the type attribute of the
<rule> tag. This tag has no attributes.

setting
The <setting> tag is the enclosing tag for any settings defined for the
pattern type component specified on the type attribute of the <rule> tag.

The attributes of the <setting> tag are:

name Specifies the name of a customizable setting for the pattern type
component. The available settings depend on the component.
v For the

com.ibm.hats.transform.components.InputFieldByTextPattern
Component, the settings for the name attribute are:

Appendix A. HATS Toolkit files 115

caseSensitive
Specifies whether the case of the text on the text setting
must match before the pattern is recognized. Valid
values are true and false. The default is true.

immediatelyNextTo
Specifies which input fields you want to transform.Valid
values are:

true Specifies that only the nearest input field should
be transformed.

false Specifies that all input fields should be
transformed.

The default is false.

location
Specifies where text in a protected field, as specified on
the text setting, must be in relation to input fields for
this global rule to be applied. Valid values are:

ABOVE
Specifies that the text must be above the input
field.

BELOW
Specifies that the text must be below the input
field.

LEFT Specifies that the text must be to the left of the
input field.

RIGHT
Specifies that the text must be to the right of the
input field.

The default is RIGHT.

text Specifies some text in a protected field of the host screen.
Valid values are any text in a protected field on the host
screen.

v For the
com.ibm.hats.transform.components.AllInputFieldsPattern
Component, there are no component settings.

v For the com.ibm.hats.transform.components.
InputFieldBySizePattern Component, the setting for the name
attribute is fieldSize.Valid values are the sizes of any input fields
on the host screen.

<associatedScreens> tag
The <associatedScreens> tag encompasses the screen tag that follows.

<screen> tag
Defines a screen associated with the screen customization. The <screen> tag has
the following attribute:

name Specifies the name of a captured screen, for which the screen recognition
criteria and actions have been defined.

116 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

<description> tag
The <description> tag is the enclosing tag for the description associated with the
screen customization, which consists of the <oia> tag and the <string> tag. There
are no attributes for the description tag.

<oia> tag
The <oia> tag in the screen customization .evnt file specifies an operator
information area (OIA) condition to match. This tag is optional. The default is to
wait for inhibit status. The attributes of the <oia> tag are:

status If NOTINHIBITED, the OIA must be uninhibited for a match to occur. If
DONTCARE, the OIA inhibit status is ignored. This has the same effect as not
specifying OIA at all. Valid values are NOTINHIBITED and DONTCARE. This
is a required attribute.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors contain more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false. This attribute is optional. The
default is false.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false. This attribute is optional. The default is false.

<string> tag
The <string> tag describes the screen based on a string. The attributes of the
<string> tag are:

value The string value. This value can contain any valid Unicode character. This
is a required attribute.

row The starting row position for a string at an absolute position or in a
rectangle. The value must be a number or an expression that evaluates to a
number. This value is optional. If not specified, Macro logic searches the
entire screen for the string. If specified, col position is required. <erow>
and <ecol> attributes can also be specified to specify a string in a
rectangular area.

Note: Negative values are valid and are used to indicate relative position
for the bottom of the screen (for example, -1 is the last row).

col The starting column position for the string at an absolute position or in a
rectangle. The value must be a number or an expression that evaluates to a
number. This attribute is optional.

erow The ending row position for string in a rectangle. The value must be a
number or an expression that evaluates to a number. This attribute is
optional. If both erow and ecol are specified, string is in a rectangle.

ecol The ending column position for string in a rectangle. The value must be a

Appendix A. HATS Toolkit files 117

number or an expression that evaluates to a number. This attribute is
optional. If both erow and ecol are specified, string is in a rectangle.

casesense
If true, string comparison is case sensitive. The value must be true or
false or an expression that evaluates to true or false. This attribute is
optional. The default is false.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors contain more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false or an expression that evaluates
to true or false. This attribute is optional. The default is false.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false or an expression that evaluates to true or false. This attribute is
optional. The default is false.

<nextEvents> tag
The <nextEvents> tag encompasses the <event> tag that follows. The <nextEvents>
tag has the following attribute:

defaultEvent
Specifies the default screen customization (event) used as the next screen to
occur, if there are no matching screen customizations named on the event
tags. If defaultEvent does not specify an event, the normal event priority
list in the project settings is used. Valid values are:
v unmatchedScreen

v error

v disconnect

v stop

v (no value)

<event> tag
Defines another screen customization in the project that is the probable next screen
to occur. The <event> tag has the following attributes:

enabled
Indicates whether the screen customization (event) defined on the name
attribute is enabled for use. The default is true.

name Specifies the name of a screen customization that is the probable next
screen to occur.

<remove> tag
The <remove> tag removes global variables previously added to the screen
customization (event). The <remove> tag has the following attributes:

118 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

enabled
Indicates whether the global variable defined on the name attribute is
enabled for removal. The default is true.

name Specifies the name of the global variable to be removed.

remove Type
Specifies the type of the global variable to be removed. Types include
oneLocal, oneShared, allLocal, allShared, and all.

Macro files (.hma)
Macro files are stored in the project_name/profiles/macros directory. You can view
and edit the source of the macro files by double-clicking on the name of the macro
in the HATS Project View to open the macro editor. The source for the file can be
viewed by clicking on the Source tab. For more information about macros, see
Advanced Macro Guide.

Macro files contain tags that define a set of screens. The tags are described in the
sections that follow.

<macro> tag
Begins the definition of the macro. The macro tag has no attributes.

<associatedConnections> tag
The <associatedConnections> tag encompasses the <connection> tag that follows.
The attribute of the <associatedConnections> tag is:

default
Identifies the default connection for this macro.

<connection> tag
The <connection> tag identifies the connection with which this macro is associated.
The attribute of the connection tag is:

name Identifies the name of the connection with which this macro is associated.

<extracts> tag
The <extracts> tag encompasses the extract tag that follows. The <extracts> tag has
no attributes.

<extract> tag
The <extract> tag defines the extraction to occur. The attributes of the extract tag
are:

name Specifies the name of the extraction.

handler
You can select a .jsp file to display the extracted information to the end
user. A default macro handler is shipped with HATS, and it is named
default.jsp. You can find this file by clicking the HATS Project View tab of
the HATS Toolkit and expanding the project name, and then expanding
Macros > Macro Event Handlers. If you want to create your own handler,
ensure that you return control to the HATS runtime.

Appendix A. HATS Toolkit files 119

showHandler
Specifies whether the extracted information should be shown to the end
user. Valid values are true and false.

shared
Specifies whether a global variable being extracted is shared between
applications running in the same rich client environment.

save Specifies whether the extracted information is saved to a global variable.
Valid values are true and false.

variableName
If the extracted information is being saved to a global variable,
variableName specifies the name of a new or existing global variable.

overwrite
If the extracted information is being saved to an existing global variable,
overwrite specifies whether the extracted information is to overwrite the
current value of the existing global variable, or whether the extracted
information is to be appended to the current value. Valid values are true
and false. True specifies that the value of the existing global variable is
overwritten.

index If the value being extracted is being written to an existing indexed global
variable, this attribute specifies the index number to which the value being
set is written. The effect of this attribute is dependent on the value of the
overwrite attribute. If overwrite=true, the value being extracted overwrites
the existing variable, beginning at the specified index. If overwrite=false,
the value being extracted is inserted into the existing variable, beginning at
the specified index.

indexed
Specifies whether the extracted information is a single string or a list of
strings. Valid values are true and false. True specifies that the extracted
information is a list of strings.

isBidi Specifies whether the connection used in recording the macro is
bidirectional. Valid values are true and false.

isRtlScreen
Specifies whether the bidirectional screen is right-to-left. Valid values are
true and false.

screenorientation
Specifies the orientation of the extract action. Valid values are ltr and rtl.

<prompts> tag
The <prompts> tag encompasses the prompt tag that follows. The prompts tag has
no attributes.

<prompt> tag
The <prompt> tag defines the prompt to occur. The attributes of the <prompt> tag
are:

name Specifies the name of the prompt.

handler
You can select a .jsp file to prompt the end user for the necessary
information, and include a button for the user to submit the information. A
default macro handler is shipped with HATS, and it is named default.jsp.

120 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

You can find this file by clicking the HATS Project View tab of the HATS
Toolkit and expanding the project name, and expanding Macros > Macro
Event Handlers. If you want to create your own handler, ensure that you
return control to the HATS runtime.

source Specifies whether the value of the prompt is set to a string or the value of
a global variable. Valid values are string and variable.

variableName
If the value of the prompt is being saved to a global variable,
variableName specifies the name of a new or existing global variable.

variableIndex
If the value of the prompt is being saved to an indexed global variable,
variableIndex specifies to which index the value should be assigned. This
value is always 0.

variableIndexed
Specifies whether the information for the prompt is coming from an
indexed global variable. Valid values are true and false. True specifies
that the global variable is indexed.

value Specifies either the string to be used for the prompt or the name of a
global variable from which the value is taken.

welApplID
Specifies the application ID to use with the WEL logon macro.

welIsPassword
Specifies whether this is a password field to use with the WEL logon
macro.

LTRImpicitOrient
Specifies whether the implicit bidirectional screen orientation is
left-to-right. Valid values are true and false.

isBidi Specifies whether the connection used in recording the macro is
bidirectional. Valid values are true and false.

isRtlField
Specifies whether the bidirectional field is right-to-left. Valid values are
true and false.

isRtlScreen
Specifies whether the bidirectional screen is right-to-left. Valid values are
true and false.

screenorientation
Specifies the orientation of the prompt action. Valid values are ltr and rtl.

<HAScript> tag
The <HAScript> tag is the main enclosing tag for the other macro tags and
attributes. See the HATS Advanced Macro Guide for more information about macro
tags.

Screen capture files (.hsc)
Screen capture files are XML representations of host screens, used to create or
customize screen customizations, screen combinations, transformations, global
rules, or macros.

Appendix A. HATS Toolkit files 121

mr_reference_to_elements.htm#mr_hascript

Screen capture files are stored in the project_name/Screen Captures directory. You
can view these files by double-clicking on the name of the screen capture in the
HATS Project View. You cannot edit screen capture files.

Note: Screen captures of video terminal (VT) host screens can be used to create or
customize a macro using the Visual Macro Editor and as the check-in screen
when configuring pooling. They cannot be used to create screen
customizations, screen combinations, transformations, default rendering, or
global rules.

BMS Map files (.bms and .bmc)
Basic Mapping Support (BMS) maps are screen definitions files for Customer
Information Control System (CICS®). Each map defines all or part of a screen, and
a CICS application typically displays one or more maps to create a complete screen
image. The source for BMS maps is organized in groups called map sets. One map
set contains one or more maps. Map sets exist in source form as one map set per
source file.

BMS map set files can be imported into a project in HATS Toolkit. When HATS
imports BMS maps, the import takes place at the map set level. It is not possible to
import an individual map. Imported BMS map set files have a file extension of
.bms, and the individual maps have a file extension of .bmc in HATS Toolkit.

Both the map set files (.bms) and the map files (.bmc) are stored in a separate
Maps folder within the HATS project. By default, the Maps folder is not visible in
the HATS Project View until there are maps imported.

HATS enables you to generate screen captures from map files. You can choose to
generate the screen captures when you import map sets, or you can generate them
from the maps after they are in the Maps folder. To generate screen captures from
maps, right click on a map file to display the pop-up menu and select Generate
Screen Captures. You can elect to create separate screen captures for each BMS
map selected or merge selected BMS maps into a single screen capture. Maps
cannot be merged if fields overlap. Once the screen captures are created, you can
begin creating HATS screen customizations.

You can open a map set file in a HATS Toolkit editor by double-clicking on the file
in the HATS Project View. See the CICS Application Programming Reference for
information about the contents of the file. When a map set file is modified and
saved in the text editor, the maps that make up the file are regenerated, with one
exception: map files in which the contents of fields defined with labels in the map
set files have been modified. To regenerate those maps, you must import the
source file again using the BMS map set import wizard.

When a CICS application runs, it can modify the contents of the fields defined
with labels. You might need to create screen captures with the fields appearing as
they will be when the CICS application runs. Since the labeled fields are
changeable when the application runs, the map set file (and the map files that are
in the map set) may not contain all the information needed to generate an actual
screen capture. While you cannot edit map files, double-clicking on a file opens a
file preview. The property sheet view in HATS Toolkit enables you to add missing
information and manually set the contents of the fields. By modifying the contents
of the fields, a single map can be used for multiple screen captures.

122 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Notes:

1. When you are previewing a map file in HATS Toolkit, the fields displayed in
the property sheet view are the fields for the map file highlighted in the HATS
Project View, not the map file you see in the preview window.

2. You can also screen capture files using the property sheet view in HATS
Toolkit, as long as the screen capture files were generated from BMS map files.

Image files (.gif, .jpg, or .png)
Image files are used in HATS Toolkit within template files to create the page
displayed to the user of your project.

Image files are stored in the project_name/images directory. You can view the image
files by double-clicking on the name of the image.

Spreadsheet files (.csv or .xls)
Spreadsheet files in either .csv (comma separated values) or .xls (Microsoft Excel)
format can be automatically generated from host screen data defined within the
TableWidget. The spreadsheet files are created by the HATS
SpreadsheetGeneratorServlet and can be displayed at runtime when the user clicks
a defined button or link. A dialog popup displays, and the user can type the
directory and file name where the spreadsheet files are to be stored.

For information about creating spreadsheet files, see the Table widget in the HATS
User's and Administrator's Guide.

Host simulation trace files (.hhs)
Host simulation trace files can be saved and then used to run HATS in a simulated
host connection environment instead of using a live host connection. Simulations
are created by the Host Simulator Recorder, which acts as a proxy between the real
host and the HATS terminal. The host simulation trace files are created in XML
format with a file extension of .hhs and are stored in the following directory in the
Host Simulations folder, which is accessed from the HATS Projects view:
v RCP projects - Project_name/profiles/hostsimulations

For information about creating host simulation trace files, see the HATS User's and
Administrator's Guide.

ComponentWidget.xml
The ComponentWidget.xml file contains the definitions of all the host components
and widgets provided with HATS. If you add your own host components or
widgets, you will need to update this file. For an explanation and a small sample
of the file, see “Registering your component or widget” on page 70. The
ComponentWidget.xml file appears as the last item in your project in the
Navigator view. To edit the file, double-click the file name in the Navigator view
and select the Source tab.

For a description of the contents and use of this file, see “Registering your
component or widget” on page 70.

Appendix A. HATS Toolkit files 123

ugcwset.htm#tablew
ugcwset.htm#tablew
ughostsm.htm
ughostsm.htm

124 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information might include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements or
changes in the product(s) and the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2007, 2015 125

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information
This Rich Client Platform Application Programmer's Guide contains information on
intended programming interfaces that allow the customer to write programs to
obtain the services of HATS.

126 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Appendix B. Notices 127

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

128 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Glossary
action. A defined task that an application performs on a managed object as a result of an event, such as a host
screen matching the screen recognition criteria specified for a screen event. A list of actions is part of the definition of
each event.

ADB. See application data buffer.

administrative console. The HATS administrative console is a Web-based utility that provides views and functions
to manage licenses and connections, set log and trace settings, view messages and traces, and perform problem
determination for HATS Web applications.

application. See HATS application.

application data buffer. The format of data that is returned by the WebFacing Server for consumption by the
WebFacing application.

application event. A HATS event that is triggered by state changes in the application's life cycle. Examples of
application events include a user first accessing a HATS application (a Start event), or an application encountering an
unrecognized screen (an Unmatched Screen event).

application keypad. A set of buttons or links representing HATS application-level functions. (Contrast with host
keypad.)

artifact. See resource

background connection. Any connection defined in a HATS application other than the default connection. HATS
does not transform screens from background connections. (Contrast with default connection.)

bidirectional (bidi). Pertaining to scripts such as Arabic and Hebrew that generally run from right to left, except for
numbers, which run from left to right.

BMS map. A screen definition file used with Basic Mapping Support in CICS. A BMS map defines a set of fields
which are to be displayed as a group by a CICS application

business logic. Java code that performs advanced functions, such as interacting with other applications, databases,
or other systems accessible via Java APIs. Business logic is invoked as an action in an application or screen event.

checkin screen. The screen identifying the host screen that should be active for a connection to be considered ready
to be returned to the connection pool. If the application is not on the screen specified by the checkin screen, the
connection will be discarded or recycled in attempt to return the connection to the host screen specified by the
checkin screen. The checkin screen is only meaningful if connection pooling is specified for a connection.

component. A visual element of a host screen, such as a command line, function key, or selection list. HATS
applications transform host components into widgets.

connection. A set of parameters used by HATS, stored in an .hco file, to connect to a host application. (See also
default connection and background connection.)

connection pool. A group of host connections that are maintained in an initialized state, ready to be used without
having to create and initialize them.

credential mapper. The component of Web Express Logon that handles requests for host credentials, which have
been previously authenticated by a network security layer. (See network security layer.)

DDS map. Data Description Specification map. These maps define the layout and behavior of the presentation space
for IBM i terminal applications.

Debug. For rich client projects, the same as Run, and in addition enables you to:

v Use the display terminal to see host screens as they are navigated while testing your project

v See debug messages in the Rational SDP console

© Copyright IBM Corp. 2007, 2015 129

v See changes you make to your project, for example changing the template or a transformation, without having to
restart your application

v Modify and test runtime settings, defined in the runtime-debug.properties file, without modifying the settings,
defined in the runtime.properties file, that are deployed to the runtime environment

v Step through Java code, such as HATS business logic

Debug on Server. For Web projects, the same as Run on Server, and in addition enables you to:

v Use the display terminal to see host screens as they are navigated while testing your project

v See debug messages in the Rational SDP console

v See changes you make to your project, for example changing the template or a transformation, without having to
restart your application on the test server

v Modify and test runtime settings, defined in the runtime-debug.properties file, without modifying the settings,
defined in the runtime.properties file, that are deployed to the runtime environment

v Step through Java code, such as HATS business logic

default connection. The connection on which HATS transforms and presents host application screens to the user.
Also referred to as transformation connection. (Contrast with background connection.)

default rendering. The method used by HATS to render parts of the host screen for which no specific
transformation is specified.

deploy. To make a HATS application ready for use in a runtime environment. For HATS Web applications, this
includes exporting the HATS project as a Java EE application, that is, as an .ear file, and installing it on WebSphere
Application Server. For HATS rich client applications, this includes exporting the HATS project as an Eclipse feature
and installing it on individual client systems, either as a stand-alone Eclipse application or from an update site to an
existing Eclipse runtime environment.

descriptor. See screen recognition criteria.

developer. The person who uses HATS Toolkit to develop applications; also application developer or Web
developer. (Contrast with user.)

Device Runtime Environment (DRE). A package containing other runtime environments, including the J2SE
runtime, which is required to run HATS rich client applications in Lotus Expeditor Client V6.2.0 and earlier. The DRE
installs into the runtime environment for Lotus Expeditor Client.

display terminal. A terminal window that displays host screens you can use while testing and debugging to
observe interactions between a HATS application and a host application at runtime. You can also interact with the
host application using host screens in the terminal window.

Eclipse. An open-source initiative that provides ISVs and other tool developers with a standard platform for
developing plug-compatible application development tools. Eclipse is available for download from
http://www.eclipse.org.

editor. An application that enables a user to modify existing data. In HATS Toolkit, editors are used to customize
resources that have been created by wizards.

Enhanced Non-Programmable Terminal User Interface (ENPTUI). Enables an enhanced interface on
non-programmable terminals (NPT) and programmable work stations (PWS) over the 5250 full-screen menu-driven
interface, taking advantage of 5250 display data stream extensions.

enterprise archive (EAR). A specialized Java archive (JAR) file, defined by the Java EE standard used to deploy Java
EE applications to Java EE application servers. An EAR file contains enterprise beans, a deployment descriptor, and
Web archive (WAR) files for individual Web applications. (Sun)

Enterprise JavaBeans (EJB). A component architecture defined by Oracle for the development and deployment of
object-oriented, distributed, enterprise-level applications. (Oracle)

event. A HATS resource that performs a set of actions based on a certain state being reached. There are two types of
HATS events, application events and screen events.

130 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

export. To collect the resources of a HATS project, along with the necessary executable code, into an application
EAR file (for Web applications) or Eclipse feature (for rich client applications) in preparation for deploying the
application.

Extensible Markup Language (XML). A standard metalanguage for defining markup languages that was derived
from and is a subset of SGML.

GB18030. GB18030 is a new Chinese character encoding standard. GB18030 has 1.6 million valid byte sequences and
encodes characters in sequences of one, two, or four bytes.

global rule. A rule defining how the rendering of specific input fields should be modified based on certain criteria.
Global rules are used in customized screens and screens rendered using default rendering. Global rules can be
defined at the project level or at the screen event level.

global variable. A variable used to contain information for the use of actions. The values of global variables can be
extracted from a host screen or elsewhere, and can be used in templates, transformations, macros, Integration Objects,
or business logic. A global variable can be a single value or an array, and it can be shared with other HATS
applications sharing the same browser session.

HATS. See Host Access Transformation Services.

HATS application. An application that presents a version of a host application to users, either as a Web-enabled
application deployed to WebSphere Application Server, a portlet deployed to a WebSphere Portal, or as an Eclipse
client-side processing plug-in deployed to an Eclipse rich client platform such as Lotus Notes or Lotus Expeditor
Client. A HATS application is created in HATS Toolkit from a HATS project and deployed to the applicable
environment. The deployed application might interact with other host or e-business applications to present combined
information to a user.

HATS EJB project. A project that contains the HATS EJB and Integration Objects that other applications can use to
get host data. A HATS EJB project does not present transformed screens from a host application.

HATS entry servlet. The servlet that is processed when a user starts a HATS Web application in a browser.

HATS project. A collection of HATS resources (also called artifacts), created using HATS Toolkit wizards and
customized using HATS Toolkit editors, which can be exported to a HATS application.

HATS Toolkit. The component of HATS that runs on Rational SDP and enables you to work with HATS projects to
create HATS applications.

Host Access Transformation Services (HATS). An IBM software set of tools which provides Web-based access to
host-based applications and data sources.

host component. See component.

host keypad. A set of buttons or links representing functions typically available from a host keyboard, such as
function keys or the Enter key. (Contrast with application keypad.)

host simulation. Host simulation enables you to record host simulation trace files that can be saved and then used
instead of a live host connection. The recorded trace files can be played back to create screen captures, screen events,
and screen transformations using the host terminal function, create and test macros using the host terminal function,
test HATS applications using the Rational SDP local test environment, and, along with other traces and logs, aid in
troubleshooting a failing scenario in a runtime environment.

host simulation trace. Host simulation trace files record host screens and transactions that can be saved and played
back later instead of using a live host connection. Trace files can be recorded using the host terminal function or
while in the runtime environment.

host terminal. A HATS Toolkit tool. A session tied to a particular HATS connection, which the HATS developer can
use to capture screens, create screen customizations, and record macros.

HTML. Hypertext Markup Language.

HTML widget. See widget

Glossary 131

|
|
|
|
|
|

Integration Object. A Java bean that encapsulates an interaction with a host screen or a series of host screens.
Integration Objects are constructed from macros and can be included in traditional (WSDL-based) Web services,
RESTful Web services, or HATS EJB projects. Integration Objects cannot be used in rich client platform applications.

interoperability. The ability of a computer or program to work with other computers or programs.

interoperability runtime. Common runtime used by a combined HATS/WebFacing application to provide
management of common connection to the backend host. This runtime decides whether data being returned by the
WebFacing server should be handled by the HATS or WebFacing part of the application.

Java Platform, Enterprise Edition (Java EE). An environment for developing and deploying enterprise applications,
defined by Oracle. The Java EE platform consists of a set of services, application programming interfaces (APIs), and
protocols that provide the functionality for developing multitiered, Web-based applications. (Oracle)

JavaServer Faces (JSF). A framework for building Web-based user interfaces in Java. Web developers can build
applications by placing reusable UI components on a page, connecting the components to an application data source,
and wiring client events to server event handlers. (Oracle)

JavaServer Pages (JSP). A server-side scripting technology that enables Java code to be dynamically embedded
within Web pages (HTML files) and run when the page is served, returning dynamic content to a client. (Oracle)

JavaServer Pages Standard Tag Library (JSTL). A standard tag library that provides support for common, structural
tasks, such as: iteration and conditionals, processing XML documents, internationalization, and database access using
the Structured Query Language (SQL). (Oracle)

JSF. See JavaServer Faces.

JSP. See JavaServer Pages.

JSR 168. The Java Portlet Specification addresses the requirements of aggregation, personalization, presentation, and
security for portlets running in a portal environment. Version 1.0 of the Java Portlet Specification, Java Specification
Request 168 (JSR 168), defines standards to enable portlet compatibility between portal servers offered by different
vendors. See JSR 286.

JSR 286. The Java Portlet Specification addresses the requirements of aggregation, personalization, presentation, and
security for portlets running in a portal environment. Version 2.0 of the Java Portlet Specification, Java Specification
Request 286 (JSR 286), defines standards to extend the capabilities of Version 1.0 (JSR 168) to include coordination
between portlets, resource serving, and other advanced features. See JSR 186.

JSTL. See JavaServer Pages Standard Tag Library.

keyboard support. The ability for a developer to enable a user to use a physical keyboard to interact with the host
when the application is running in a Web browser or rich client environment. The developer also decides whether to
include a host keypad, an application keypad, or both, in a project. If keypads are included, the developer decides
which keys are included and how those keys and the keypad appear in the client interface.

keypad support. The ability for a developer to enable a user to interact with the host as if the physical keys on a
keyboard were pressed, or to perform tasks related to the application, such as viewing their print jobs or refreshing
the screen. See also application keypad and host keypad.

linked HATS/WebFacing project. A project created by linking a single HATS Web project with a single WebFacing
project for the purpose of creating an enterprise application that includes a HATS Web application interoperating
with a WebFacing application and sharing a connection to a 5250 backend host.

Lotus Expeditor Client. A standalone client of the Lotus Expeditor product. It is installed on a user or development
machine.

Lotus Notes Client. A standalone client of the Lotus Notes product. It is installed on a user or development
machine.

macro. A macro, stored in a .hma file, automates interactions with the host. It can send commands to the host, enter
data into entry fields, extract data from the host, and be used to navigate screens on behalf of the user.

132 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Model 1 Web pages. A single JSP that contains the information to be presented to the user, formatting tags that
specify how the information is displayed, and logic that controls the order in which pages are displayed. (Contrast
with Struts Web pages.)

network security layer. Software that is responsible for authenticating users and authorizing them to access network
resources, such as IBM Tivoli Access Manager.

Operator Information Area (OIA). OIA is the area at the bottom of the host session screen where session indicators
and messages appear. Session indicators show information about the workstation, host system, and connectivity.

perspective. In the Rational SDP workbench, a group of views that show various aspects of the resources in the
workbench. The HATS perspective is a collection of views and editors that allow a developer to create, edit, view,
and run resources which belong to HATS applications.

pooling. See connection pool.

portal. An integrated Web site that dynamically produces a customized list of Web resources, such as links, content,
or services, available to a specific user, based on the access permissions for the particular user.

print support. The ability for a developer to specify a printer session to be associated with a host session, and
enable the user to view host application print jobs, send them to a printer, or save them to disk. Print support is
available only for the default connection

Profile. For rich client projects, the same as Run, and in addition enables you to locate the operations that require
the most time, and identify actions that are repeated, to eliminate redundancy. You can use this function for
performance analysis, helping you to get a better understanding of your application.

Profile on Server. For Web projects, the same as Run on Server, and in addition enables you to locate the operations
that require the most time, and identify actions that are repeated, to eliminate redundancy. You can use this function
for performance analysis, helping you to get a better understanding of your application.

project. A collection of HATS resources (also called artifacts) that are created using HATS Toolkit wizards and
customized using HATS Toolkit editors. These resources are exported as a HATS application. Types of HATS projects
include Web, portlet, EJB, rich client, and for purposes of administering HATS Web (including portlet and EJB)
applications, HATS administrative console projects. See HATS project or HATS EJB project.

Rational Software Delivery Platform (Rational SDP). A family of IBM software products that are based on the
Eclipse open-source platform and provide a consistent set of tools for developing e-business applications.

rendering set. A rendering set is configured by creating a prioritized list of rendering items. Each rendering item
defines a specific region in which a specified host component is recognized and then rendered using a specified
widget.

resource. Any of several data structures included in a HATS project. HATS resources include templates, screen
events, transformations, screen captures, connections, and macros. Other Rational SDP plug-ins sometimes call these
"artifacts."

RESTful Web service. See Web service, RESTful.

rich client. A plug-in designed to run on the Eclipse Rich Client Platform in a client environment, and designed to
provide an enhanced user experience by the appearance and behavior native to the platform on which it is deployed.

Run. For rich client projects, a function in Rational SDP that enables you to test your HATS rich client projects in an
Eclipse, Lotus Notes, or Lotus Expeditor Client instance. In this mode you can modify and test the runtime settings,
defined in the runtime.properties file, that are deployed to the runtime environment. Be aware that any changes
made to the runtime settings while testing in this mode are retained and become effective when you deploy the
HATS application to a runtime environment.

Run on Server. For Web projects, a function in Rational SDP that enables you to test your HATS Web and portlet
projects in a WebSphere Application Server as appropriate. In this mode you can modify and test the runtime
settings, defined in the runtime.properties file, that are deployed to the runtime environment. Be aware that any
changes made to the runtime settings while testing in this mode are retained and become effective when you deploy
the HATS application to a runtime environment.

Glossary 133

|
|
|
|

|
|
|
|
|

runtime settings. Log, trace, and problem determination settings defined in the runtime.properties file that are
deployed to the runtime environment.

screen capture. An XML representation of a host screen, stored in a .hsc file, used to create or customize a screen
customization, screen combination, transformation, global rule, or macro. Screen captures are useful because they
enable you to develop a HATS project even when not connected to the host. They are also useful in creating macros
which are the core of HATS Integration Object and Web services support.

Screen captures of video terminal (VT) host screens can be used to create or customize a macro using the Visual
Macro Editor and as the check-in screen when configuring pooling. They cannot be used to create screen
customizations, screen combinations, transformations, default rendering, or global rules.

screen combination. A type of HATS screen event designed to gather output data from consecutive, similar host
screens, combine it, and display it in a single output page. The screen combination definition, stored in a .evnt file,
includes a set of screen recognition criteria for both the beginning and ending screens to be combined, how to
navigate from screen to screen, and the component and widget to use to recognize and render the data gathered from
each screen.

screen customization. A type of screen event designed to perform a set of actions when a host screen is recognized.
A screen customization definition, stored in a .evnt file, includes a set of criteria for matching host screens, and
actions to be taken when a host screen matches these criteria.

screen event. A HATS event that is triggered when a host screen is recognized by matching specific screen
recognition criteria. There are two types of screen events, screen customizations and screen combinations.

screen recognition criteria. A set of criteria that HATS uses to match one or more screens. When a host displays a
screen, HATS searches to determine whether the current host screen matches any of the screen recognition criteria
defined for any screen event in your project. If HATS finds a match, the defined actions for the screen event are
performed.

Screen recognition criteria are also used in the process of recording a macro; in this context they are sometimes called
descriptors.

Secure Sockets Layer (SSL). A security protocol that provides communication privacy. SSL enables client/server
applications to communicate in a way that is designed to prevent eavesdropping, tampering, and message forgery.
SSL was developed by Netscape Communications Corp. and RSA Data Security, Inc.

source. The files containing the markup language that define a HATS project or one of its resources. Also the name
of a folder contained in each HATS project.

SSL. See Secure Sockets Layer.

standard portlets. Portlets that comply with the standard portlet APIs defined by Java Portlet Specifications JSR 168
or JSR 286. See JSR 168 and JSR 286. .

Standard Widget Toolkit (SWT). An Eclipse toolkit for Java developers that defines a common, portable, user
interface API that uses the native widgets of the underlying operating system.

Struts Web pages. Web pages built using the Apache Software Foundation’s Struts open-source framework for
creating Java web applications. This method of building Web pages creates class files that set values and contain
getters and setters, input and output JSPs, and a Web diagram to display the flow and logic of the Web pages.
(Contrast with Model 1 Web pages.)

SWT. See Standard Widget Toolkit.

system screen. An IBM i screen for which data description specification (DDS) display file source members are not
available. System screen is specific to an application on an IBM i platform that has been WebFaced.

template. A template, stored in a .jsp file (for Web projects) or a .java file (for rich client projects), controls the basic
layout and style, such as color and font, of the application. It also defines the appearance of areas that are common in
your GUI, such as a banner and a navigation area.

text replacement. A HATS function used to transform text on a host system into images, HTML code, or other text
on a HATS screen transformation,

134 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

theme. A theme groups a set of common appearance and behavior characteristics for a project. These attributes can
be individually modified later.

transfer. To copy an application EAR file to the server, typically by FTP.

transformation. A transformation stored in a .jsp file (for Web projects) or a .java file (for rich client projects) defines
how host components should be extracted and displayed using widgets in your GUI.

transformation connection. See default connection.

transformation fragment. A HATS resource that contains the content with which to replace all occurrences of a
pattern in any given transformation.

Unicode. A universal character encoding standard that supports the interchange, processing, and display of text that
is written in any of the languages of the modern world. It also supports many classical and historical texts in a
number of languages. The Unicode standard has a 16-bit international character set defined by ISO 10646.

user. Any person, organization, process, device, program, protocol, or system that uses the services of a computing
system.

user list. A list containing information about accounts (user IDs) that a HATS application can use to access a host or
database. User lists contain user IDs, passwords, and descriptions for the accounts.

UTF-8. Unicode Transformation Format, 8-bit encoding form, which is designed for ease of use with existing
ASCII-based systems.

Web archive (WAR). A compressed file format, defined by the Java EE standard, for storing all the resources
required to install and run a Web application in a single file.

Web Express Logon (WEL). A HATS feature that enables users to log onto several hosts using a set of credentials
that are authenticated by a network security layer. (See network security layer.)

Web service. A self-contained, self-describing modular application that can be published and invoked over a
network using standard network protocols.

Web service, RESTful. A Web service that uses a stateless architecture and is viewed as a resource rather than a
function call. Well-formatted URIs are used to identify the Web service resource, HTTP method protocols are used to
do create, retrieve, update, and delete (CRUD) activities, and HTTP header information is used to define the message
format.

Web service, traditional, WSDL-based. A Web service where typically, XML is used to tag data, SOAP is used to
transfer data, WSDL is used for describing the services available, and UDDI is used for listing what services are
available.

WebFacing feature. The IBM WebFacing Tool for IBM i feature of the HATS Toolkit. The WebFacing feature
provides the ability to convert IBM i data description specification (DDS) display file source members into a
Web-based user interface for existing 5250 programs.

WebFaced application. A Web application produced by the WebFacing feature of the HATS Toolkit.

WebSphere. An IBM brand name that encompasses tools for developing e-business applications and middleware for
running Web applications. Sometimes used as a short name for WebSphere Application Server, which represents the
runtime half of the WebSphere family of products.

WebSphere Application Server. Web application server software that runs on a Web server and that can be used to
deploy, integrate, run, and manage e-business applications. HATS applications, when exported and transferred to a
server, run as WebSphere Application Server applications.

WEL. See Web Express Logon.

widget. A reusable user interface component such as a button, scrollbar, control area, or text edit area, that can
receive input from the keyboard or mouse and can communicate with an application or with another widget. HATS
applications transform host components into widgets.

wizard. An active form of help that guides users through each step of a particular task.

Glossary 135

workbench. The user interface and integrated development environment (IDE) in Eclipse-based products such as
Rational SDP.

XML. See Extensible Markup Language.

Various Java definitions reprinted with permission from Oracle.

136 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Index

Special characters
<rule> tag 94, 114

A
actions tag 110
adding business logic 53
alternate rendering support

settings 90
API documentation 2
AppletSettings

settings 83
application (.hap) file 81
application tag 81, 82
ApplicationKeypadTag

settings 83
apply tag 110
applyGlobalRules attribute

apply tag 110
applyTextReplacement attribute

apply tag 110
associatedConnections tag 119
associatedScreen

screenCombination 110
associatedScreen attribute 108

renderingItem tag 92
rule tag 94, 114

associatedScreens tag 116
asynchronous update

settings 83
attribute

associatedScreen 108
column 109
row 109
type 108

attributes
applyGlobalRules

apply tag 110
applyTextReplacement

apply tag 110
associatedScreen

renderingItem tag 92
rule tag 94, 114

autoEraseFields
RuntimeSettings 88

casesense
string tag 118

caseSensitive
replace tag 90, 93

certificateFile
hodconnection tag 97

class
execute tag 113

code page
hodconnection tag 97

codePageKey
hodconnection tag 97

col
insert tag 110
sendkey tag 114

attributes (continued)
col (continued)

string tag 117
componentSettings

rule tag 114
connection

perform tag 114
connecttimeout

hodconnection tag 99
dec

set tag 112
default

associatedConnections tag 119
defaultRendering tag 91

defaultEvent
nextEvents tag 118

description
application tag 81
event tag 110
hodconnection tag 99
renderingItem tag 92
renderingSet tag 91
rule tag 94, 114

disableFldShp
hodconnection tag 99

disableNumSwapSubmit
hodconnection tag 99

disconnecttimeout
hodconnection tag 99

ecol
extract tag 111
string tag 117

enableArrowKeyNavigation
RuntimeSettings 88

enableAutoAdvance
RuntimeSettings 88

enableAutoTabOn
RuntimeSettings 88

enabled
apply tag 110
disconnect tag 113
event tag 82, 118
execute tag 113
extract tag 111
forwardtoURL tag 113
insert tag 110
pause tag 114
play tag 113
renderingItem tag 92
rule tag 94, 115
sendkey tag 114
set tag 111
show tag 113

enableOverwriteMode
RuntimeSettings 88

enableScrRev
hodconnection tag 100

enableTypeAhead
RuntimeSettings 89

endCol
renderingItem tag 92

attributes (continued)
endCol (continued)

rule tag 94, 115
endRow

renderingItem tag 92
rule tag 94, 115

erow
extract tag 111
string tag 117

fill
insert tag 110

from
replace tag 90, 93

handler
extract tag 119
prompt tag 120

host
hodconnection tag 100

hostSimulationName
hodconnection tag 100

immediateKeyset
apply tag 110

includeLabelsInTabOrder
RuntimeSettings 89

index
extract tag 111, 120
insert tag 111
set tag 112

indexed
extract tag 111, 120

invertmatch
oia tag 117
string tag 118

isBidi
extract tag 120
prompt tag 121

isRtlField
prompt tag 121

isRtlScreen
extract tag 120
prompt tag 121

key
sendkey tag 114

LTRImpicitOrient
prompt tag 121

LUName
hodconnection tag 100

LUNameSource
hodconnection tag 100

macro
perform tag 114
play tag 113

matchLTR
replace tag 91, 94

matchRTL
replace tag 91, 94

method
execute tag 113

name
class tag 82, 103
connection tag 119

© Copyright IBM Corp. 2007, 2015 137

attributes (continued)
name (continued)

event tag 82, 118
extract tag 111, 119
prompt tag 120
renderingSet tag 91
screen tag 116
set tag 111
setting tag 93, 95, 96, 104, 115,

116
op

set tag 112
op1

set tag 112
op1_index

set tag 112
op1_shared

set tag 112
op1_type

set tag 112
op2

set tag 112
op2_index

set tag 112
op2_shared

set tag 112
op2_type

set tag 112
optional

oia tag 117
string tag 118

overwrite
extract tag 111, 120
set tag 112

package
execute tag 113

port
hodconnection tag 100

regularExpression
replace tag 90, 93

row
insert tag 110
sendkey tag 114
string tag 117

save
extract tag 120

scol
extract tag 111

screenorientation
extract tag 120
prompt tag 121

screenSize
hodconnection tag 101

selectAllOnFocus
RuntimeSettings 89

sessionType
hodconnection tag 101

shared
extract tag 111, 120
insert tag 111
set tag 111

showHandler
extract tag 120

singlelogon
hodconnection tag 101

source
insert tag 110

attributes (continued)
source (continued)

prompt tag 121
srow

extract tag 111
SSL

hodconnection tag 101
startCol

renderingItem tag 92
rule tag 95, 115

startRow
renderingItem tag 92
rule tag 95, 115

startStateLabel
forwardtoURL tag 113

status
oia tag 117

suppressUnchangedData
RuntimeSettings 89

template
application tag 81
apply tag 110
show tag 113

time
pause tag 114

TNEnhanced
hodconnection tag 101

to
replace tag 90, 93

toImage
replace tag 90, 93

transformation
apply tag 110

transformationFragment
rule tag 95, 115

type
event tag 82, 110
renderingItem tag 92
rule tag 95, 115
set tag 112

url
forwardtoURL tag 113
show tag 113

value
insert tag 110
prompt tag 121
set tag 112
setting tag 93, 95, 96, 106, 116
string tag 117

variableIndex
prompt tag 121

variableIndexed
prompt tag 121

variableName
extract tag 120
prompt tag 121

VTTerminalType
hodconnection tag 101

welApplID
prompt tag 121

welIsPassword
prompt tag 121

widget
renderingItem tag 92

workstationID
hodconnection tag 101

attributes (continued)
workstationIDSource

hodconnection tag 102
autoEraseFields

RuntimeSettings 88

B
BIDI OrderBean 76

methods 77
bidirectional API

data conversion 75
global variables 76

BMS Map (.bms and .bmc) files 122
business logic

adding to project 53
creating 53
deleting global variables 57
examples 57
using global variables 55

C
casesense attribute

string tag 118
caseSensitive attribute

replace tag 90, 93
caseSensitive setting

name attribute
global rule 95, 116

value attribute
global rule 95, 116

certificateFile attribute
sessionhodconnection tag 97

class attribute
execute tag 113

class tag 82, 103
classes

AppletSettings 83
ApplicationKeypadTag 83
ClientLocale 84
components.name 90
DBCSSettings 84
DefaultConnectionOverrides 85
DefaultGVOverrides 85
DefaultRendering 90
HostKeypadTag 85
KeyboardSupport 86
OIA 87
RuntimeSettings 88
ToolBarSettings 89
transform 90
widgets.name 89

classSettings tag 82, 103, 106, 107
ClientLocale

settings 84
codepage attribute

hodconnection tag 97
codePageKey attribute

hodconnection tag 97
col attribute

insert tag 110
sendkey tag 114
string tag 117

column attribute 109
combinations tag 108

138 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

component, HATS
custom

HATS Toolkit support 72
registering 70

components 65
components.name

settings 90
componentSettings attribute

rule tag 114
componentSettings tag 92, 95, 115
ComponentWidget.xml file 68, 71
connection attribute

perform tag 114
connection files 96
connection tag 119
connecttimeout attribute

hodconnection tag 99
creating business logic wizard 53

check box
Create global variable helper

methods 53
custom component, HATS

HATS Toolkit support 72
registering 70

custom host component
creating 66

custom screen recognition 60
custom widget, HATS

HATS Toolkit support 72
registering 70

D
DBCSSettings

settings 84
dec attribute

set tag 112
default attribute

associatedConnections tag 119
defaultRendering tag 91

DefaultConnectionOverrides
settings 85

defaultEvent attribute
nextEvents tag 118

DefaultGVOverrides
settings 85

DefaultRendering
settings 90

defaultRendering tag 91
deleting global variables

from business logic 57
description attribute

application tag 81
event tag 110
hodconnection tag 99
renderingItem tag 92
renderingSet tag 91
rule tag 94, 114

description tag 117
disableFldShp attribute

hodconnection tag 99
disableNumSwapSubmit attribute

hodconnection tag 99
disconnect tag 113
disconnecttimeout attribute

hodconnection tag 99
dynamic 108

E
ecol attribute

extract tag 111
string tag 117

editing
files 81

enableArrowKeyNavigation
RuntimeSettings 88

enableAutoAdvance
RuntimeSettings 88

enableAutoTabOn
RuntimeSettings 88

enabled attribute
apply tag 110
disconnect tag 113
event tag 82, 118
execute tag 113
extract tag 111
forwardtoURL tag 113
insert tag 110
pause tag 114
play tag 113
renderingItem tag 92
rule tag 94, 115
sendkey tag 114
set tag 111
show tag 113

enableFieldLength setting
name attribute

global rule 96
enableOverwriteMode

RuntimeSettings 88
enableScrRev attribute

hodconnection tag 100
enableTypeAhead

RuntimeSettings 89
endCol attribute

renderingItem tag 92
rule tag 94, 115

enddescription tag 108
endRow attribute

renderingItem tag 92
rule tag 94, 115

ENPTUI 102
erow attribute

extract tag 111
string tag 117

event tag 82, 109, 118
event tags

actions 110
apply 110
associatedScreens 116
description 117
disconnect 113
event 118
execute 113
extract 111
forwardtoURL 113
insert 110
nextEvents 118
oia 117
pause 114
perform 114
play 113
screen 116
sendkey 114
set 111

event tags (continued)
show 113
string 117

eventPriority tag 82
examples

business logic 57
execute tag 113
extract tag 111, 119
extracts tag 119

F
fieldSize setting

name attribute
global rule 96, 116

files
application (.hap) 81
BMS Map (.bms and .bmc) 122
connection (.hco) 96
image 123
macro (.hma) 119
screen capture (.hsc) 121
screen combination (.evnt) 108
screen customization (.evnt) 109

fill attribute
insert tag 110

forwardtoURL tag 113
from attribute

replace tag 90, 93

G
global rule

setting tag
name attribute 95, 96, 115, 116
value attribute 95, 96, 116

global rules 70
global variables

in business logic 55
globalRules tag 94, 114

H
handler attribute

extract tag 119
prompt tag 120

HAScript tag 121
HATS

component
HATS Toolkit support 72
registering 70

host component
creating 66

widget
creating 68
HATS Toolkit support 72
registering 70

HATS Toolkit support
custom component 72
custom widget 72

host attribute
hodconnection tag 100

host component
custom

creating 66

Index 139

host component, HATS
creating 66
custom 66

host components 65
HostKeypadTag

settings 85
hostSimulationName attribute

hodconnection tag 100

I
image files 123
immediateKeyset attribute

apply tag 110
immediatelyNextTo setting

name attribute
global rule 95, 116

value attribute
global rule 95, 116

importing Java code 54
includeLabelsInTabOrder

RuntimeSettings 89
index attribute

extract tag 111, 120
insert tag 111
set tag 112

indexed attribute
extract tag 111, 120

insert tag 110
invertmatch attribute

oia tag 117
string tag 118

isBidi attribute
extract tag 120
prompt tag 121

isRtlField attribute
prompt tag 121

isRtlScreen attribute
extract tag 120
prompt tag 121

J
Java code

importing 54
Javadoc 2

K
key attribute

sendkey tag 114
KeyboardSupport

settings 86
keyPress tag 109

L
locale, client

settings 84
location setting

name attribute
global rule 96, 116

value attribute
global rule 96, 116

LTRImpicitOrient attribute
prompt tag 121

LUName attribute
hodconnection tag 100

LUNameSource attribute
hodconnection tag 100

M
macro (.hma) file 119
macro attribute

perform tag 114
play tag 113

macro tag 119
macro tags

associatedConnections 119
connection 119
extract 119
extracts 119
HAScript 121
macro 119
prompt 120
prompts 120

matchLTR attribute
replace tag 91, 94

matchRTL attribute
replace tag 91, 94

method attribute
execute tag 113

N
name attribute

class tag 82, 103
connection tag 119
event tag 82, 118
extract tag 111, 119
next screen settings

default.appletDelayInterval 105
default.blankScreen 106
default.blankScreen.keys 106
default.delayInterval 106
default.delayStart 106
nextScreenClass 106
oiaLockMaxWait 106

print settings
printFontName 104
printNumSwapSupport 104
printOrientation 104
printPaperSize 104
printRTLSupport 105
printSupport 105
printSymSwapSupport 105
printURL 105

prompt tag 120
renderingSet tag 91
screen tag 116
set tag 111
setting tag 93, 104

alternate rendering support 90
AppletSettings 83
ApplicationKeypadTag 83
ClientLocale 84
com.ibm.hats.transform 90
components.name 90
DBCSSettings 84

name attribute (continued)
setting tag (continued)

DefaultConnectionOverrides 85
DefaultGVOverrides 85
DefaultRendering 90
HostKeypadTag 85
KeyboardSupport 86
OIA 87
RuntimeSettings 88
ToolBarSettings 89
widgets.name 89

next screen settings
name attribute

default.appletDelayInterval 105
default.blankScreen 106
default.blankScreen.keys 106
default.delayInterval 106
default.delayStart 106
nextScreenClass 106
oiaLockMaxWait 106

nextEvents tag 118
normal 108

O
OIA

settings 87
oia tag 117
op attribute

set tag 112
op1 attribute

set tag 112
op1_index attribute

set tag 112
op1_shared attribute

set tag 112
op1_type attribute

set tag 112
op2 attribute

set tag 112
op2_index attribute

set tag 112
op2_shared attribute

set tag 112
op2_type attribute

set tag 112
optional attribute

oia tag 117
string tag 118

otherParameters
ENPTUI 102

otherParameters tag 102
overwrite attribute

extract tag 111, 120
set tag 112

P
package attribute

execute tag 113
pause tag 114
perform tag 114
play tag 113
port attribute

hodconnection tag 100

140 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

print settings
name attribute

printFontName 104
printNumSwapSupport 104
printOrientation 104
printPaperSize 104
printRTLSupport 105
printSupport 105
printSymSwapSupport 105
printURL 105

programming tasks 1
project

adding business logic 53
prompt tag 120
prompts tag 120

R
recognize method 66
regularExpression attribute

replace tag 90, 93
remove tag 118
renderingItem tag 92
renderingSetg tag 91
replace tag 90, 93
row attribute 109

insert tag 110
sendkey tag 114
string tag 117

RuntimeSettings
settings 88

S
save attribute

extract tag 120
scol attribute

extract tag 111
screen capture (.hsc) file 121
screen combination (.evnt) files 108
screen customization (.evnt) file 109
screen recognition

custom 60
global variables 62

screen tag 116
screenCombination

event tag 110
screenDown tag 109
screenorientation attribute

extract tag 120
prompt tag 121

screenSize attribute
hodconnection tag 101

screenUp tag 108
selectAllOnFocus

RuntimeSettings 89
sendkey tag 114
sendText tag 109
session tag 97
sessionType attribute

hodconnection tag 101
set tag 111
setCursor tag 109
setting tag 83, 92, 93, 95, 104, 115

settings
name attribute

caseSensitive 95, 116
enableFieldLength 96
fieldSize 96, 116
immediatelyNextTo 95, 116
location 96, 116
text 96, 116

value attribute
caseSensitive 95, 116
immediatelyNextTo 95, 116
location 96, 116
text 96, 116

shared attribute
extract tag 111, 120
insert tag 111
set tag 111

show tag 113
showHandler attribute

extract tag 120
singlelogon attribute

hodconnection tag 101
source attribute

insert tag 110
prompt tag 121

srow attribute
extract tag 111

SSL attribute
hodconnection tag 101

startCol attribute
renderingItem tag 92
rule tag 95, 115

startRowl attribute
renderingItem tag 92
rule tag 95, 115

startStateLabel attribute
forwardtoURL tag 113

status attribute
oia tag 117

string tag 117
suppressUnchangedData

RuntimeSettings 89
SwtElementFactory 69

T
tag

combinations 108
enddescription 108
keyPress 109
screenDown 109
screenUp 108
sendText 109
setCursor 109

template attribute
application tag 81
apply tag 110
show tag 113

templates
editing 32

text setting
name attribute

global rule 96, 116
value attribute

global rule 96, 116
textReplacement tag 90
textReplacements tag 93

time attribute
pause tag 114

TNEnhanced attribute
hodconnection tag 101

to attribute
replace tag 90, 93

toImage attribute
replace tag 90, 93

ToolBarSettings
settings 89

transform
settings 90

transformation
editing 19

transformation attribute
apply tag 110

transformationFragment attribute
rule tag 95, 115

type attribute 108
event tag 82, 110
renderingItem tag 92
rule tag 95, 115
set tag 112

U
url attribute

forwardtoURL tag 113
show tag 113

V
value

dynamic 108
normal 108

value attribute
insert tag 110
prompt tag 121
set tag 112
setting tag 93, 106
string tag 117

variableIndex attribute
prompt tag 121

variableIndexed attribute
prompt tag 121

variableName attribute
extract tag 120
prompt tag 121

VTTerminalType attribute
hodconnection tag 101

W
welApplID attribute

prompt tag 121
welIsPassword attribute

prompt tag 121
widget attribute

renderingItem tag 92
widget, HATS

custom
HATS Toolkit support 72
registering 70

widgets 65
widgets.name

settings 89

Index 141

widgetSettings tag 93
wizard

creating business logic 53
workstationID attribute

hodconnection tag 101
workstationIDSource attribute

hodconnection tag 102

X
xml tags

application 81
class 82, 103
classSettings 82, 103, 106, 107
componentSettings 92, 95, 115
connection 82
defaultRendering 91
event 82
eventPriority 82
globalRules 94, 114
otherParameters 102
renderingItem 92
renderingSet 91
replace 90, 93
rule 94, 114
session 97
setting 83, 92, 93, 95, 104, 115
textReplacement 90
textReplacements 93
widgetSettings 93

142 IBM Host Access Transformation Services: Rich Client Platform Programmer's Guide

Readers’ Comments — We'd Like to Hear from You

IBM Host Access Transformation Services
Rich Client Platform Programmer's Guide
Version 9.5

Publication No. SC27-5903-01

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: 1-800-227-5088 (US and Canada)
v Send your comments via email to: USIB2HPD@VNET.IBM.COM

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC27-5903-01

SC27-5903-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Rational Enterprise Modernization UAD
Department 67RA/Building 503
Research Triangle Park, NC 27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in USA

SC27-5903-01

	Contents
	Chapter 1. Introduction
	Code examples
	Using the API documentation (Javadoc)

	Chapter 2. Plug-ins and application classes
	Plug-in project extension points
	Allowing only one instance of an application

	HATS runtime extension plug-in
	Application classes
	HostAccessApplication
	HostAccessWorkbenchAdvisor
	HostAccessWorkbenchWindowAdvisor
	Controlling the size of the workbench window
	Showing the perspective bar

	HostAccessActionBarAdvisor
	Customizing the workbench window toolbar

	Chapter 3. Perspectives and views
	The Host Access perspective
	Applications view
	Programmatically starting an instance of an application

	Transformation view
	Extending the transformation view's menu

	Chapter 4. Transformations
	Editing transformations
	HATS-specific controls
	The ComponentRendering class
	The DefaultRendering class
	The MacroKey class
	The GlobalVariableControl class
	The HostKey class
	The ApplicationKey class

	Transformation classes
	Samples
	Sending a key from a button
	Updating an input field after the user selects a SWT List widget item
	Setting the value of a global variable from a transformation
	Setting and retrieving global variable values
	Validating input on a transformation
	Customizing the host keypad
	Customizing the application keypad
	Overriding the default monospaced font
	Integrating other user interface widgets
	Binding a SWT Slider widget to a host input field

	Chapter 5. Templates
	Editing templates
	Samples
	Customizing host color mappings
	Removing borders from input fields

	Chapter 6. Runtime services
	Accessing the service manager
	Using the runtime service
	Using the application service
	Using the client service
	Using the session service
	Integration with other Eclipse UI views
	An incoming communication scenario

	Samples
	Sample class and methods showing how to access the different runtime services
	Listening for 3270 Print Jobs
	Creating a custom composite for use with the Show action

	Chapter 7. Integrating business logic
	Incorporating Java code from other applications
	Using global variables in business logic
	Business logic examples
	Example: Date conversion
	Example: Adding values that are contained in an indexed global variable
	Example: Reading a list of strings from a file into an indexed global variable

	Using custom screen recognition
	Example of custom screen recognition
	Custom screen recognition using global variables

	Chapter 8. Creating custom components and widgets
	Components and widgets properties for RCP applications
	Creating a custom host component
	Extending component classes
	Creating a custom widget
	Extending widget classes
	Widgets and global rules

	Registering your component or widget
	HATS Toolkit support for custom component and widget settings

	Chapter 9. Using the HATS bidirectional API
	Data Conversion APIs
	ConvertVisualToLogical
	ConvertLogicalToVisual

	Global Variable APIs
	getGlobalVariable
	getSharedGlobalVariable

	BIDI OrderBean
	BIDI OrderBean methods

	Appendix A. HATS Toolkit files
	Application file (.hap)
	<application> tag
	<connections> tag
	<connection> tag
	<eventPriority> tag
	<event> tag
	<classSettings> tag
	<class> tag
	<setting> tag
	com.ibm.hats.common.AppletSettings
	com.ibm.hats.common.ApplicationKeypadTag
	com.ibm.hats.common.ClientLocale
	com.ibm.hats.common.DBCSSettings
	com.ibm.hats.common.DefaultConnectionOverrides
	com.ibm.hats.common.DefaultGVOverrides
	com.ibm.hats.common.HostKeypadTag
	com.ibm.hats.common.KeyboardSupport
	com.ibm.hats.common.OIA
	com.ibm.hats.common.RuntimeSettings
	com.ibm.hats.rcp.transform.widgets.name
	com.ibm.hats.rcp.ui.views.ToolBarSettings
	com.ibm.hats.transform
	com.ibm.hats.transform.components.name
	com.ibm.hats.transform.DefaultRendering

	<textReplacement> tag
	<replace> tag
	<defaultRendering> tag
	<renderingSet> tag
	<renderingItem> tag
	<globalRules> tag
	<rule> tag

	Connection files (.hco)
	<hodconnection> tag
	<otherParameters> tag
	<classSettings> tag
	<class> tag
	<setting> tag
	<poolsettings> tag
	<userconfig> tag

	Screen combination files (.evnt)
	<combinations> tag
	<enddescription> tag
	<navigation> tag
	<screenUp> tag
	<screenDown> tag
	<keyPress> tag
	<setCursor> tag
	<sendText>

	Screen customization files (.evnt)
	<event> tag
	<actions> tag
	<apply> tag
	<insert> tag
	<extract> tag
	<set> tag
	<execute> tag
	<show> tag
	<forwardtoURL> tag
	<disconnect> tag
	<play> tag
	<perform> tag
	<pause> tag
	<sendkey> tag
	<globalRules> tag
	<rule> tag
	<associatedScreens> tag
	<screen> tag
	<description> tag
	<oia> tag
	<string> tag
	<nextEvents> tag
	<event> tag
	<remove> tag

	Macro files (.hma)
	<macro> tag
	<associatedConnections> tag
	<connection> tag
	<extracts> tag
	<extract> tag
	<prompts> tag
	<prompt> tag
	<HAScript> tag

	Screen capture files (.hsc)
	BMS Map files (.bms and .bmc)
	Image files (.gif, .jpg, or .png)
	Spreadsheet files (.csv or .xls)
	Host simulation trace files (.hhs)
	ComponentWidget.xml

	Appendix B. Notices
	Programming interface information
	Trademarks

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Readers’ Comments — We'd Like to Hear from You

